
6.897 Advanced Data Structures (Spring’05)

Prof. Erik Demaine TA: Mihai Pǎtraşcu

Problem 2 Due: Monday, Feb. 14

Preliminaries. Remember the definition of a rotation from Lecture 3. In this problem, we will
work with an alternative cost model for BST algorithms. Roughly, the cost is just the number of
rotations performed. More precisely, a query must bring the queried element to the root; the cost
of the query is 1 plus the number of rotations performed. Rotations may be performed anywhere
in the tree, for the same cost of 1. We are only interested in this BST cost metric, and you do not
need to worry about the actual running times of your algorithms. (If you are curious, all bounds in
this model also hold for the model defined in class, up to constant factors. Therefore, one generally
uses whichever model is easier to analyze for a certain problem.)

Prove the following: Suppose we are given two BSTs T1 and T2 on the same n keys. Show
that one can transform T1 into T2 using at most 2n + O(1) rotations.

Hint: There is a simple, short, and non-messy solution to this question—and probably a lot of
messy ones. Try to find the simple one.

Competitiveness with an O(lg n) guarantee. Assume that we perform m ≥ n operations.
Suppose that we have an α-competitive BST algorithm, i.e., the cost (number of rotations) is at
most α · OPT, where OPT is the optimal cost for the given access sequence. Note that α may not
be a constant (think of α = O(lg lg n), as in Lecture 4). Therefore, if OPT is big (close to m lg n),
α · OPT may even be higher than the trivial O(m lg n) guarantee. We would like to have the best
of both worlds: keep the α-competitiveness, but always guarantee an O(lg n) amortized running
time.

Prove the following: Given an online α-competitive BST algorithm, one can construct an
online BST algorithm whose cost is always O(min{α · OPT,m lg n}).

Hint: Break the access sequence into chunks of n accesses. Remember that your BST algorithm
must be online, so it doesn’t know the access sequence ahead of time. Not even m is known ahead
of time! (But it is guaranteed that m ≥ n.)

1


