Near(est) Neighbor in High Dimensions

Piotr Indyk

Nearest Neighbor

 \bigcirc

q

 \bigcirc

 \bigcirc

- Given:
 - A set P of points in R^d
 - Goal: build data structure which, for any query q, returns a point p∈ P minimizing ||p-q||

Solution for d=2 (sketch)

- Compute Voronoi diagram
- Given q, perform point location
- Performance:
 - Space: O(n)
 - Query time: O(log n)(see 6.838 for details)

NN in R^d

- Exact algorithms use
 - Either $n^{O(d)}$ space,
 - Or O(dn) time
- Approximate algorithms:
 - Space/time exponential in d [Arya-Mount-et al], [Kleinberg'97], [Har-Peled'02]
 - Space/time polynomial in d [Kushilevitz-Ostrovsky-Rabani'98], [Indyk-Motwani'98], [Indyk'98],...

Why high dimensions ? Eigenfaces

(Approximate) Near Neighbor

- Near neighbor:
 - Given:
 - A set P of points in R^d, r>0
 - Goal: build data structure which, for any query q, returns a point p∈ P,
 ||p-q|| ≤ r (if it exists)
- **c**-Approximate Near Neighbor:
 - Goal: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - it returns $p' \in P$, $||p-q|| \le cr$

Locality-Sensitive Hashing [Indyk-Motwani'98]

- Idea: construct hash functions
 g: R^d → U such that for any points p,q:
 - If ||p-q|| ≤ r, then Pr[g(p)=g(q)] is "high" "not-so-small"
 - If ||p-q|| >cr, then Pr[g(p)=g(q)] is "small"
- Then we can solve the problem by hashing

q O

[⊖]p

LSH

- A family H of functions h: $\mathbb{R}^d \rightarrow U$ is called ($\mathbb{P}_1, \mathbb{P}_2, r, cr$)-sensitive, if for any p,q:
 - if ||p-q|| < r then $Pr[h(p)=h(q)] > P_1$

- if ||p-q|| > cr then $Pr[h(p)=h(q)] < P_2$

Algorithm: "essentially" hash using g(p)=h₁
 (p).h₂(p)...h_k(p)

– Intuition: amplify the probability gap

LSH for Hamming metric [IM'98]

- Hamming metric:
 - p,q are 0-1 vectors of length d
 - ||p-q|| = # positions i on which $p_i \neq q_i$
- Functions: $h(p)=p_i$, i.e., the i-th bit of p
- We have

Pr[h(p)=h(q)] = 1-||p-q||/d

Remaining parts

- The details of the algorithm
- Analysis: how many different hash tables do we need
 - Storage
 - Query time
- Extension to non-0-1 case

Technical part

- See slides at http://theory.lcs.mit.edu/~indyk/MASS/lec6.pdf
- Notation change: c=1+ε, ||p-q||=D(p,q)

Other norms

 Can embed I₁^d with coordinates in {1...M} into dM-dimensional Hamming space