
Massachusetts Institute of Technology Handout 5
6.852: Distributed Algorithms
Prof. Nancy Lynch September 15, 2005

Problem Set 1, Part b (modified)

Due: Thursday, September 22, 2005

Reading:

Sections 3.5-3.6 and 4.1-4.4 of Distributed Algorithms

(Optional) Attiya-Welch, Chapter 2

Reading for next week: Section 5.1 and Chapter 6 of Distributed Algorithms

Aguilera, Toueg paper, listed in Handout 3
(Optional) Keidar, Rajsbaum paper, Sections 4.1-4.4 (skim)
(Optional) Attiya-Welch, Sections 5.1 and 5.2

Problems:

0. Email Tina to join the course mailing list and to select a problem set to grade, if you have not already
done so (details on course website).

1. Exercise 4.4.
The main point of this exercise is to get some practice defining and using a simple simulation relation.

2. Consider a variation of the Shortest Paths problem described in Section 4.3 of the textbook where:

A. Halting is not required: we require only that eventually a shortest paths tree over the processes
exists and does not change,

B. Each process’s state contains a Boolean constant, source, which is set to true for i0 and false for
every process i 6= i0, and

C. (modified:) Except for source and edge weight constants, the initial state of each process is
arbitrary: each non-source, non-weight state variable v of a process, (including any rounds or
status variables), is initially set to an arbitrary value from type(v).

Note that these conditions mean that different processes might think they are in different rounds, and
processes can’t tell if they are just starting an algorithm execution or are in the middle of an execution.

(a) Explain informally why the BellmanFord algorithm descibed on p. 62 of the textbook does not
solve this new version of the Shortest Paths problem.

(b) Describe informally a modified version of BellmanFord that does solve the Shortest Paths prob-
lem under these conditions.

(c) Give formal code for your new algorithm.

(d) (Don’t turn in:) Think about how you would prove that your modified algorithm is correct.

3. Exercise 4.17

4. Exercise 4.22.

5. Design an algorithm to produce a depth-first spanning tree starting at the root. It should be similar
to the one discussed in class, but should have time complexity O(n) rather than O(|E|).
Hint: When a node receives the token for the first time, it notifies all its neighbors, but passes the
token to only one of them. Give pseudocode, and give a convincing argument for why your algorithm
is correct and has the claimed time bound.

