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Problem Set 8 Solutions

This problem set is not due and is meant as practice for the final. Reading: 26.1, 26.3, 35.1

Problem 8-1. Prove these problems are NP-Complete:

(a) SET-COVER : Given a finite set
�

, a collection �������	��
���
�
������������ of subsets of�
, and an integer � , determine whether there is a sub-collection of � with cardinality

� that covers
�

. In other words, determine whether there exists ������� such that� ��� � ��� and �� �!#"%$'&(��)�� � .

Solution: The problem is in NP: to prove that there exists a sub-collection with
cardinality � that covers the set

�
, one can use the sub-collection �*� as the certificate,

which has polynomial size. To verify the certificate, check that the cardinality of �+� is
� and that every element in � is in one of the subsets in ��� . It takes polynomial time
to verify the certificate.

The NP-Complete problem VERTEX-COVER is a special case of SET-COVER : the set�
corresponds to the set of edges in the graph and each subset in � corresponds to a

node in the graph and contains all the edges attached to the node. Since SET-COVER

generalizes VERTEX-COVER , SET-COVER is NP-Hard.

(b) DIRECTED-HAMILTONIAN-PATH: given a directed graph ,-�/.102
�354 and two dis-
tinct vertices 67
98;:<0 , determine whether , contains a path that starts at 6 , ends at 8 ,
and visits every vertex of the graph exactly once. (Hint: Reduce from HAM-CYCLE:
34.5.3 in CLRS.)

Solution: It is clear that this is a problem in NP, since in order to prove that a digraph
has a Hamiltonian path, it is sufficient to provide an ordering of the vertices; and to
verify that a given ordering of the vertices represents a Hamiltonian path, it is sufficient
to check that any two consecutive vertices 8')=
98>)@?�� are joined by an edge .A8�)B
�8C)@?��D4 .
We now need to show that this is an NP-hard problem. We use a reduction from
HAM-CYCLE problem.

First, reduce Hamiltonian cycle to directed Hamiltonian cycle: suppose we are given
an undirected graph , � .102
�3E4 . Create a directed graph , � � .F0G
�3 � 4 , where
.A6H
�8I4J
>.K8L
96�4M:N3O� if .K67
98P4Q:R3 . If this new graph has a directed Hamiltonian cycle,
then the original graph , must have a Hamiltonian cycle, and the other way around.

Then, reduce directed Hamiltonian cycle to directed Hamiltonian path: suppose we
are given a digraph ,S�T.F0G
93E4 . Construct a new graph ,U���V.10W�#
�3O�X4 as follows:
Pick and arbitrary vertex 8Y:Z0 and split it into two vertices: 8\[ and 8]� . Let 0��^�
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.F0��Y8P4 � �>8C[(
98]��� . For all edges .K8L
96�4*: 3 , add an edge .K8'[(
96�4�:<3O� . For all edges
.A6H
�8I4 : 3 , add an edge .K67
98 � 4�: 3�� . For all other edges in 3 , copy them to 35� .
We claim that , � has a Hamiltonian path from 8'[ to 8]� if and only if , has a directed
Hamiltonian cycle.
Suppose , has a Hamiltonian cycle. Then it is clear from the construction that ,E� will
have a Hamiltonian path from 8'[ to 8]� .
Suppose ,�� has a Hamiltonian path from 8'[ to 8 � . Then there is a sequence of edges
in 3O� that start at 8�[ and end in 8 � and visit every node exactly once. From the way 3E�
was constructed, it follows that there exists a path in , that starts at 8 and ends at 8
such that it visits every node 6��� 8 exactly once and 8 exactly twice. Such a path in
, is its Hamiltonian cycle.
Therefore it follows that the directed Hamiltonian path problem is NP-complete.

Problem 8-2. MAX-CUT Approximation

A cut .1� 
J0�� �G4 of an undirected graph , � .102
�3E4 is a partition of V into two disjoint subsets
� and 0�� � . We say that an edge .A67
98P4�: 3 crosses the cut .1� 
J0�� �G4 if one of its endpoints
is in � and the other is in 0�� � . The MAX-CUT problem is the problem of finding a cut of an
undirected connected graph ,�� .102
�354 that maximizes the number of edges crossing the cut.
Give a deterministic approximation algorithm for this problem with a ratio bound of � . Hint: Your
algorithm should guarantee that the number of edges crossing the cut is at least half of the total
number of edges.

Solution: The following algorithm maintains two disjoint subsets 	 and 
 of 0 , both initially
empty. At each iteration, the algorithm looks at a new vertex 8 and places it either in 	 or 
 so as
to maximize the number of edges going across these sets. That is, if 8 is adjacent to more vertices
of 	 than of 
 , then 8 is placed in 
 , otherwise, it is placed in 	 .

APPROX-MAX-CUT .F0G
93E4
1 	�� 

2 
�� 

3 for each vertex 8 : 0
4 do if

� �>6 :�	�� .K8L
96�4�: 3;� ��� � �>6 :�
�� .K8L
96�4�: 3 � �
5 then 
�� 
 � �>8 �
6 else 	�� 	 � �>8L�
7 return .�	+
�
�4

The final value of .�	*
�
�4 is a cut of , , since every vertex is placed either in 	 or in 
 (but not in
both). The time complexity of this algorithm is � . � 0 ��� � 3 � 4 , since each edge is examined twice.

To see that the number of edges crossing the cut .�	*
�
�4 is at least half the total number of edges,
we prove the following invariant.
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Invariant: Before and after each iteration, the number of edges going across . 	*
�
�4 is at least as
large as the number of edges inside 	 and 
 .

Proof. We prove this invariant by induction. The basis is trivial since 	 and 
 are empty. For the
inductive step, assume that the invariant is true before the iteration that considers some vertex 8 .
Denote by

�
the number of edges going from 8 to the vertices of 	 , and by � the number of edges

going from 8 to the vertices of 
 . If
� � � then the algorithm places 8 in 
 . The number of edges

going across .�	*
�
�4 is increased by
�
, and the number of edges within 	 and 
 is increased by � .

Thus, the invariant hold after the iteration as well. The case of
��� � is symmetric. This completes

the proof.

The invariant states that the number of edges going across the cut is at least the number of edges
inside 	 and 
 . This means that the number of edges crossing the cut is at least half of the total
number of edges (this solves the hint). Since the number of edges crossing any cut of , , including
the maximum one, is at most the total number of edges, this algorithm has a ratio bound of 2.

Problem 8-3. Global Edge Connectivity of Undirected and Directed Graphs

(a) The global edge connectivity of an undirected graph is the minimum number of edges
that must be removed to disconnect the graph. Show how the edge connectivity of
an undirected graph , � .102
�3E4 can be determined by running the maximum-flow
algorithm

� 0 � ��� times, each on a flow network with � . � 0 � 4 vertices and � . � 3 � 4
edges.

Solution: Construct a directed graph ,O� from , by replacing each edge �>67
98 � in ,
by two directed edges .K67
98P4 and .K8L
96�4 in , � . Let ��.A6H
�8I4 be the maximum flow value
from 6 to 8 through ,O� with all edge capacities equal to one. Pick an arbitrary node 6
and compute ��.K67
98P4 for all 8 �� 6 . We claim that the edge connectivity equals �
	���
���������� ��.K67
98P4 . Therefore the edge connectivity of , can be computed by running the
maximum-flow algorithm

� 0 � ��� times on flow networks each having
� 0 � vertices

and � � 3 � edges.
Suppose � is the edge connectivity of the graph and � is the set of � edges such
that removal of � will disconnect the graph in two non-empty subgraphs , � and ,�
 .
Without loss of generality assume the node 6 : , � . Let � be a node in ,U
 . Since
6 ���� the value ��.K67
��Q4 will be computed by the algorithm. By the max-flow min-cut
theorem, � .A67
��W4 equals the min cut size between the pair .K67
��Q4 , which is at most �
since � disconnects 6 and � . Therefore, we have

� 	 � ��.K67
��W4 � ���
But ��	 cannot be smaller than � since that would imply a cut set of size smaller than
� , contradicting the fact that � is the edge connectivity. Therefore �
	 � � and the
algorithm returns the edge connectivity of the graph correctly.
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(b) The global edge connectivity of a directed graph , is the minimum number of directed
edges that must be removed from , so that the resulting graph is no longer strongly
connected. Show how the edge connectivity of a directed graph , � .102
�3E4 can
be determined by running the maximum-flow algorithm

� 0 � times, each on a flow
network with � . � 0 � 4 vertices and � . � 3 � 4 edges.

Solution: Label the
� 0 � nodes as 8'[�
�8 �J
 ����� 
�8�� ��� � � in an arbitrary order. Let ��.A6H
�8I4

be the maximum flow value from 6 to 8 through , with all edge capacities equal to
one. We claim that the global edge connectivity � 	 for , is the following:

� 	 � �
��� �
� .A8�[%
98]��4�
 ��.K8]��
�8�
J4J
������%
 ��.K8 � ��� � � 
98C[�4J�
This implies that the global edge connectivity can be determined by

� 0 � max-flow
computations on , .

First we prove that � 	 � �
��� �
��.A8�[%
98 ��4J
 ��.K8]��
98C
J4J
������%
 ��.K8 � ��� � � 
98�[�4J� :

� 	 � �
���
)�� � " � � .
	�
�� 4� �
��� �
��.A8�[%
98 ��4J
 ��.K8]��
98C
�4�
 ������
 ��.K8 � ��� � � 
98�[�4J�

Next we prove that � 	�
 �
��� �
� .A8�[ 
98 �D4�
 ��.K8]�J
98C
J4J
������%
 ��.K8�� ��� � �J
98C[J4J� .
Suppose � is the minimum set of edges that needs to be removed from , to remove its
strong connectivity. Let ,�� be the resulting graph. Since it is not strongly connected,
there exists 6H
�8 : ,�� such that 8 is not reachable from 6 . Let � be the set of vertices
in ,�� reachable from 6 and � � 0���� . It follows that any � : � is not reachable
from any � :�� .

We show that there exists 	G: ���I
��'
 �P
���� ��
 � 0 � � ��� such that 8�)H:�� and 8�� )@?�������� � ��� ! :
� . Let � be the smallest index such that 8"�O: � . If � � � , then 8#�$� �+:%� and 8#��: �
and we are done. Otherwise, � �&� and we have two cases. If 8 � ��� � � :'� , then we
are done as 8 � ��� � � :(� and 8C[5: � . Otherwise, let � be the smallest index such that
8�) : � for all * 
 � . Such � must exist since 8+� ��� � �+: � . Also, we know that � � �
since otherwise � would be empty. Therefore, we have 8-,.� � :/� and 80,W: � .

Finally we prove that the flow value ��.K8�)1
98C)X?�� 4 is at most
� � � ����	 . Suppose ��.A8C)1
98>)@?���4 �� � � . By Max-Flow Min-Cut Theorem the minimum number of edges that must be re-

moved from , to disconnect 8�)X?�� from 8>) is greater than
� � � . This contradicts the fact

that 8C)@?�� is unreachable from 8C) in , � . Therefore,

� 	 
 ��.K8>)B
98>)@?�� 4

 �
��� �
��.A8�[%
98 ��4J
 ��.K8]��
98C
�4�
 ������
 ��.K8 � ��� � � 
98�[�4J�
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Problem 8-4. Perfect Matching in Regular Bipartite Graph

A bipartite graph , � .102
�3E4 , where 0 � 	 � 
 , is � -regular if every vertex 8 : 0 has degree
exactly � .

(a) Prove that for every � -regular bipartite graph,
� 	 � � � 
 � .

Solution: Every edge in the graph connect a node in 	 and a node in 
 . Therefore
total number of edges can be expressed as both

� 	 � � and
� 
 � � , which implies

� 	 � �� 
 � .

(b) Model the maximum d-regular bipartite matching as a max-flow problem as in Section
26.3 in CLRS. Show that the max-flow value from � to � in the formulation is

� 	 � .

Solution: Reduce the bipartite matching problem to a network flow problem, as
in figure 26.3 in CLRS. Every edge has unit capacity. Consider the following flow
function: every edge out of � or into � has unit flow, and all the other edges have
flow ����� . This is a valid flow, and is maximum since every edge from � is saturated.
Therefore, the max-flow value is

� 	 � .

(c) Prove that every � -regular bipartite graph has a matching of cardinality
� 	 � .

Solution: Since every edge in the max-flow formulation has integral capacity, the
integrality theorem (Theorem 26.11) guarantees that there is an integral flow with
value

� 	 � . Such integral flow corresponds to a matching of cardinality
� 	 � .


