
Introduction to Algorithms February 24, 2004
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 7

Problem Set 3

Reading: Chapters
�
8.1-8.3, 31.1-31.5, 31.7-31.8

There are four problems. Each problem is to be done on a separate sheet (or sheets) of paper.
Mark the top of each sheet with your name, the course number, the problem number, your recitation
section, the date, and the names of any students with whom you collaborated.

You will often be called upon to “give an algorithm” to solve a certain problem. Giving an
algorithm entails:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. A proof (or argument) of the correctness of the algorithm.

3. An analysis of the running time of the algorithm.

It is also suggested that you include at least one worked example or diagram to show more
precisely how your algorithm works. Remember, your goal is to communicate. Graders will be
instructed to take off points for convoluted and obtuse descriptions. If you cannot solve a problem,
give a brief summary of any partial results.

Problem 3-1. Min and Max

Suppose we wish to find both the minimum and maximum values in an array of � distinct elements.
To individually find either the minimum or maximum, there is clearly a ����� lower bound on
comparisons, since we must compare every element at least once. We can save a comparison by
first scanning for the minimum, removing it, then scanning for the maximum. This takes a total of� ���	� comparisons.

Based on this observation, prove the following statement true or false:

“It takes at least
� �
��� comparisons, for some constant � , to find both the minimum and the

maximum in an array of � distinct elements.”

Solution: False. Consider the following algorithm:

 Compare every pair of elements in ��� � comparisons.
 Put the ��� � “light” elements in a set � .
 Put the other ��� � “heavy” elements in a set � .
 Scan � and � for the minimum and maximum, respectively.

2 Handout 7: Problem Set 3

Since the minimum is less than all other elements, it will always be in � . Similarly, the maximum
will always be in � . Exhaustively searching � and � will clearly find these elements. The total
amount of comparisons will be ��� � to produce � and � , ��� � � � to scan � and � � � � � to scan
� . This is a total of � ��� � � � comparisons, clearly contradicting the above statement.

Problem 3-2. Monotone Priority Queues

A “monotone priority queue” (MPQ) is a data structure that supports the following operations:

 MIN(
�

) - Returns the minimum element in
�

. The minimum of a new, empty MPQ is
initially ��� . Otherwise, the minimum of an empty MPQ is the last element deleted.
 INSERT(

�����
) - Inserts

�
into

�
given that

�	�
MIN
 ��� . If

�	
MIN
 ��� , then the MPQ is not

modified.
 DELETE-MIN(

�
) - If

�
is empty, returns the minimum. Otherwise, removes and returns the

minimum from
�

. If the queue is empty after the operation, the last deleted value remains
the minimum. In other words, the minimum value is monotonically increasing and does not
reset when the MPQ is empty.

For this problem, assume that
�

is an integer in the range ��� ����� for some fixed integer value
�

.

(a) Implement a monotone priority queue that takes ��
�������� � � -time to perform � op-
erations starting with an empty data structure.

Solution: Implement the MPQ using a simple Heap. The MPQ-Heap will test to
ensure newly inserted elements are greater than or equal to the current minimum.
Also, the MPQ-Heap must keep track of the value of the last deleted element if it
becomes empty.

Each MIN operation takes ��
 � � . After � INSERT operations, a simple heap can
have depth �!
������ � � . This depth gives an upper-bound on the cost of each INSERT

and DELETE-MIN . Therefore, the total amount of work over � operations is upper-
bounded by ��
��������"� � .

(b) Give an implementation of a monotone priority queue that takes ��
#�%$ �&�
time to

perform � total operations. Hint: Use an idea from COUNTING-SORT .

Solution:

1. Initialize an array ' of size
�
. Let �)(�	* �+� .

2. MIN(
�

) - Return �)(� .

3. INSERT(
���,�

) - If
 �-� �)(� � , increment '.� �/� .
4. DELETE-MIN(

�
) -

 If '0�1�)(� �32 � , return �)(� .

Handout 7: Problem Set 3 3

 If '0�1�)(� ��� � , return �)(� . Decrement '0�1�)(� � . While
�'0�1�)(� � 2 � ���

��)(��� �&�

, increment �)(� .

This uses an array to keep track of instances of values in ��� ����� , like COUNTING-SORT .
In addition, it uses a monotonically increasing pointer �)(� to keep track of the mini-
mum value in the array.

Clearly, MIN and INSERT take ��
 � � time. Although DELETE-MIN runs in time ��
 �&� ,
it can monotonically increase �)(� a total of

�
times over any number of operations.

Therefore, over � operations at most ��
#� $ �&�
work can be done.

(c) 6.046 student Ben K. Bitdiddle has invented a MPQ that operates on any totally or-
dered set, rather than just integers in the range �1� ����� . A total ordering defines a �
relation for all pairs of elelments in a set.

Ben claims that his MPQ can perform � operations in ��
�������� ��� � � � -time. Ben’s
classmate Alyssa P. Hacker quickly dismisses his claim as impossible. Explain who is
correct and prove why.

Solution: Alyssa P. Hacker is correct. Given Ben’s MPQ implementation, we could
effectively sort any set of � totally ordered elements in �!
������ � � � � � � time. Since
the set is totally ordered, there must exist some minimum element which can be found
in �!
�� � time by scanning through the set. If the minimum is inserted into the MPQ
first, then every other element can be inserted without any restriction.

Once the minimum is inserted, we can perform � INSERT operations followed by
� DELETE-MIN operations to extract the set in sorted order. By Ben’s claim, this
would take ��
#� � � � ��� � � � time, which is less than the �
#� � � � � � lower bound for
comparison based sorting.

Problem 3-3. Operations on Elliptic Curves

Throughout this problem we will be discussing operations on elliptic curve points. You do not
need to know any specifics about elliptic curves or their operations. The basic operand will be
points denoted by bold capital letters, for example P.

You are given a subroutine ADD which can add points, for example ADD(P,Q) = P + Q. You may
assume that ADD runs in ��
 � � -time, where P has an � -bit representation.

Multiplying an elliptic curve point P by a scalar � is equivalent to adding P to itself
�� � � � times.
That is,

�
P = P + P, � P = P + P + P, etc. By this definition, (� P + 	 P) =
�� $
	 � P = (P + � P).

(a) Suppose you are given a
�
-bit integer � and a point P as inputs. Give a �
 � �� � -time

scalar multiplication algorithm that computes � P using only calls to ADD.

Solution:

4 Handout 7: Problem Set 3

SCALAR-MULTIPLY(� , P):
1 Q * P
2 for (* � to � :
3 Q * ADD(Q, P)
4 return Q

The point P is naively added to itself � times, clearly producing the correct result. This
algorithm calls ADD � � � number of times, so runs in time ��
 � � � � .

(b) Give an �
 � �&� -time scalar multiplication algorithm.

Solution:

Let � 2
�� � � � � ������� � � � , i.e. ��� is the (th least significant bit of � . You may assume that
� � 2 �
SCALAR-MULTIPLY(� , P):
1 Q * P
2 for (* � � � downto � :
3 Q * ADD(Q, Q)
4 if
���� 2 � � Q * ADD(Q, P)
5 return Q

1. Pre-Condition: Q
2
�� � � P

2. Inductive Hypothesis: Before the (th iteration, Q
2
 � � ����� � � � �	� � � P

3. Induction: When Q is added to itself, it becomes
 � � ����� ���
� � � � P. If
���� 2 � � ,
then P is added and Q

2
�� � ����� ���
� � � � P. Thus, after the loop completes Q
2

�� � ����� ���	� � ��� � P.

4. Post-Condition: The loop terminates when (2 � , so Q
2
�� � ����� ���	� � � � � P 2 � P.

In this algorithm, ADD is called at least
�

times and at most
� �

times. Clearly it runs
in �
 � �&� -time.

(c) Ben K. Bitdiddle, notices that his solution to part (b) always makes between
�

and
� �

calls to ADD. He thinks he can improve on this and writes a point doubling procedure
DOUBLE that runs in �!
 � � time. The output of DOUBLE(P) is

�
P.

Rewrite your solution to part (b) using DOUBLE. What are the new upper and lower
bounds on the runtime? What is the expected number of calls to ADD if � is chosen
uniformly at random from

� � � �� � ?
Solution:

Handout 7: Problem Set 3 5

SCALAR-MULTIPLY(� , P):
1 Q * P
2 for (* � � � downto � :
3 Q * DOUBLE(Q)
4 if
���� 2 � � Q * ADD(Q,P)
5 return Q

Clearly this code is correct by part (b), since DOUBLE(Q) = ADD(Q,Q). Since it
makes between � and

�
calls to ADD, this code runs in �!
 � � � and �
 � � . If � is a

random
�

-bit number, half of its bits are expected to be 1. Therefore, this algorithm
will make an average of

� � � calls to ADD.

(d) Ben gets the idea to pre-compute the values P,
�
P, � P, ����� ,
 ��� � � � P and store them in

an array ' such that '0�1(� 2 (P. Suppose you naively fill in the array ' in �!
 � ��� � -time
by repeated point addition. Give an ��
 � �� � -time scalar multiplication algorithm. You
may assume that

�
divides
 � � � � and may use both DOUBLE and ADD in your code.

Solution:

SCALAR-MULTIPLY(� , P):
1 Q * P
2 for (* � � � downto � in steps of

�
:

3 for �.* � to
�
:

4 Q * DOUBLE(Q) � Shift Q by
�

bits
5 	 *
���� ����� ��� � � � � � � 	 gets a value in �1� � � � � � �
6 if
 	 � � � Q * ADD(Q, '.� 	 �)
7 return Q

This code is essentially identical to part (b), except that it uses a “sliding window” of�
-bits to look up a value in a pre-computed array. The correctness proof of (b) also

holds in this example. In fact, part (b) can be thought of a “sliding window” with

 � 2 � � .
Comment: Since no relations were given between � and

�
, you could conceivably

have a case where
� � � , for example,

� 2 ��� . Plugging this into the above ��
 � � � � �
runtime would give a nonsensical ��
 � � � � runtime. We need to at least read the

�
-bit

input, so this algorithm has a tight lower bound of �
 � � . Technically, we should have
said ��
	� � ��
 �&� or �!
 �
 � $ � � ��� , or explicitly stated that � � � � �

. In practice it is
usually the case that � � � �

.

(e) Give a value of
�

such that the algorithm in part (d) runs in �
 � �&� . Include both the
time it takes to fill ' and compute � P, i.e. ��
 � � � $ � �� � .

6 Handout 7: Problem Set 3

Solution:
By taking the derivative of � � � $ � �� , we see that we wish to minimize

� � � � 2 �
. An

approximate solution is
� 2 ��� � � �������
�� � � �&� . Plugging this in, we get a solution that

is asymptotically faster than ��
 � �&� (
� 2 ��� � � � � � also works):

� ������� � � ������������� ��	 $ � �
����� � � � � �
#��� � �&�

2 � �
� � � � $

� �
��� � � � � � �
�� � � �&�

2 �

 � �
� � � � � ��� �
#��� � � ���

Problem 3-4. Man on the Moon

Alyssa (') wishes to determine whether her
 ��$ � � -bit string is the same as Ben’s (�)
 � $ � � -
bit string � . Unfortunately, Ben lives on the moon and communication costs are very high. Ben
devises a scheme to determine with high probability whether or not 2 � , while minimizing
communication. Let � and � � denote the (th bits of and � ’s respective representations:

1. ' picks a prime � such that ��� � � � � .
2. ' defines a � -degree polynomial over ��� , denoted
 �3� 2
�� ������ � � � ��� ����� .

3. ' picks a random
��� � � and computes
 �3� , and sends
 �3� , � , and � to � .

4. � defines a � -degree polynomial over ��� , denoted �
 �3� 2
 � ������ � � � � � � ���!� .

5. � computes �
 �3� and accepts if
 �3� 2 �
 �3� .
(a) Given that a � -degree polynomial can have at most � roots, if #"2 � what is the

maximum probability that Ben accepts?

Solution: If $"2 � ,
 �3� can match �
 �3� at most � points. Since there are at least � �
points in �%� , there is at most a � � � � 2 � � � chance of

�
being a false match.

(b) Give an explicit upper bound (in terms of �) on the number of bits transmitted in this
scheme. Do not give an asymptotic upper bound, but rather an actual function, e.g.& � � instead of ��
 � � � .
Solution: Alice transmits � ,
 �3� and

�
. We have that:

� � � � � �����'� � � � � ��$ � ,
� � � � � ��� � �)$ � and ��� �(
 �3�. � ��� � �)$�� , so at most) � � � � $ � total bits are
transmitted. (We will also accept) � � � � .)

Alyssa suggests a second scheme:

1.Repeat
�

times:

(a) ' picks a prime � uniformly at random from the range � � ��* �
.

Handout 7: Problem Set 3 7

(b) ' sends � and
 � � ��� � to � .

(c) � rejects if
 � � � �!� � "2
 � ���!� � .
2. � accepts if
 � � � ��� � 2
 � ���!� � for all steps.

(c) Assume that there are � primes less than
*

, that is
�� � � � ����� � � * �
, and

that
 � ���� � � � � 2�� � � � � . If "2 � , give an upper bound on the probability, in terms
of
�

and � , that
 � � � � ��2
 � � � � � � for all
�

rounds. You will need to use the
Chinese Remainder Theorem.

Solution:
By the Chinese Remainder Theorem, every number

� � � � � ��� � will have a unique set
of residues

� � � � ��� � � ���� � . If "2 � , then there will be at least one prime ��� where

 � � �!��� � "2
 � � � ����� � . If we pick a prime � � uniformly from all primes less than*

, then there is a least � � � chance that we’ll detect �"2 � .
Therefore, the probability that
 � ���!� � � 2
 � � � �!� � � is at most
 � ��� � � � . Since �
is chosen independently in each round, there is at most a
 � � � � � � � chance of failing
all
�

rounds.

Alternatively, if we assume Alyssa chooses
�

distinct primes, we can say that she has
at least a

� � � chance of choosing a bad prime, and thus at most
 � � � � � � chance of
failing.

(d) Using the the Prime number theorem in CLRS Section 31.8, upper bound the proba-
bility of failing all

�
rounds of the protocol in terms of

�
and

*
?

Solution: The Prime number theorem implies � � * �&
#��� � * �
, so � � � �
#��� � * � � � *

and
 � � � � � �
 � �
#��� � * � � � * �
. Therefore there is at most a
 � �
#��� � * � � � * � �

chance of failing all
�

rounds.

Alternatively, if Alyssa chooses
�

distinct primes, she’d have a
 � �
 � ��� � * � � � * �
chance of failing all

�
rounds.

