Lecture Notes on Skip Lists

Lecture 11 - October 21, 2002

Erik Demaine

- Balanced tree structures we know at this point: B-trees, red-black trees, treaps.
- Could you implement them right now? Probably, with time... but without looking up any details in a book?
- Skip lists are a simple randomized structure you'll never forget.

Starting from scratch

- Initial goal: just searches - ignore updates (Insert/Delete) for now
- Simplest data structure: linked list
- Sorted linked list: $\Theta(n)$ time
- 2 sorted linked lists:
- Each element can appear in 1 or both lists
- How to speed up search?
- Idea: Express and local subway lines
- Example: $14,23,34,42,50,59,66,72,79,86,96,103,110,116,125$ (What is this sequence?)
- Boxed values are "express" stops; others are normal stops
- Can quickly jump from express stop to next express stop, or from any stop to next normal stop
- Represented as two linked lists, one for express stops and one for all stops:

- Every element is in linked list 2 (LL2); some elements also in linked list 1 (LL1)
- Link equal elements between the two levels
- To search, first search in LL1 until about to go too far, then go down and search in LL2
- Cost:

$$
\operatorname{len}(\mathrm{LL} 1)+\frac{\operatorname{len}(\mathrm{LL} 2)}{\operatorname{len}(\mathrm{LL} 1)}=\operatorname{len}(\mathrm{LL} 1)+\frac{n}{\operatorname{len}(\mathrm{LL} 1)}
$$

- Minimized when

$$
\begin{aligned}
& \operatorname{len}(\mathrm{LL} 1)=\frac{n}{\operatorname{len}(\mathrm{LL} 1)} \\
\Rightarrow & \operatorname{len}(\mathrm{LL} 1)^{2}=n \\
\Rightarrow & \operatorname{len}(\mathrm{LL} 1)=\sqrt{n} \\
\Rightarrow & \text { search cost }=2 \sqrt{n}
\end{aligned}
$$

- Resulting 2-level structure:

- 3 linked lists: $3 \cdot \sqrt[3]{n}$
- k linked lists: $k \cdot \sqrt[k]{n}$
- $\lg n$ linked lists: $\lg n \cdot \sqrt[\lg n]{n}=\lg n \cdot \underbrace{n^{1 / \lg n}}_{=2}=\Theta(\lg n)$
- Becomes like a binary tree:

- Example: Search for 72
* Level 1: 14 too small, 79 too big; go down 14
* Level 2: 14 too small, 50 too small, 79 too big; go down 50
* Level 3: 50 too small, 66 too small, 79 too big; go down 66
* Level 4: 66 too small, 72 spot on

Insert

- New element should certainly be added to bottommost level (Invariant: Bottommost list contains all elements)
- Which other lists should it be added to?
(Is this the entire balance issue all over again?)
- Idea: Flip a coin
- With what probability should it go to the next level?
- To mimic a balanced binary tree, we'd like half of the elements to advance to the next-to-bottommost level
- So, when you insert an element, flip a fair coin
- If heads: add element to next level up, and flip another coin (repeat)
- Thus, on average:
- $1 / 2$ the elements go up 1 level
- $1 / 4$ the elements go up 2 levels
- $1 / 8$ the elements go up 3 levels
- Etc.
- Thus, "approximately even"

Example

- Get out a real coin and try an example
- You should put a special value $-\infty$ at the beginning of each list, and always promote this special value to the highest level of promotion
- This forces the leftmost element to be present in every list, which is necessary for searching ... many coins are flipped ...
(Isn't this easy?)
- The result is a skip list.
- It probably isn't as balanced as the ideal configurations drawn above.
- It's clearly good on average.
- Claim it's really really good, almost always.

Analysis: Claim of With High Probability

- Theorem: With high probability, every search costs $\Theta(\lg n)$ in a skip list with n elements
- What do we need to do to prove this? [Calculate the probability, and show that it's high!]
- We need to define the notion of "with high probability"; this is a powerful technical notion, used throughout randomized algorithms
- Informal definition: An event occurs with high probability if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1-O\left(1 / n^{\alpha}\right)$
- In reality, the constant hidden within $\Theta(\lg n)$ in the theorem statement actually depends on c.
- Precise definition: A (parameterized) event E_{α} occurs with high probability if, for any $\alpha \geq 1, E_{\alpha}$ occurs with probability at least $1-c_{\alpha} / n^{\alpha}$, where c_{α} is a "constant" depending only on α.
- The term $O\left(1 / n^{\alpha}\right)$ or more precisely c_{α} / n^{α} is called the error probability
- The idea is that the error probability can be made very very very small by setting α to something big, e.g., 100

Analysis: Warmup

- Lemma: With high probability, skip list with n elements has $O(\lg n)$ levels
- (In fact, the number of levels is $\Theta(\log n)$, but we only need an upper bound.)

- Proof:

$-\operatorname{Pr}[$ element x is in more than $c \lg n$ levels $]=1 / 2^{c \lg n}=1 / n^{c}$

- Recall Boole's inequality / union bound:

$$
\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\cdots+\operatorname{Pr}\left[E_{n}\right]
$$

- Applying this inequality:
$\operatorname{Pr}[$ any element is in more than $c \lg n$ levels $] \leq n \cdot 1 / n^{c}=1 / n^{c-1}$
- Thus, error probability is polynomially small and exponent $(\alpha=c-1)$ can be made arbitrarily large by appropriate choice of constant in level bound of $O(\lg n)$

Analysis: Proof of Theorem

- Cool idea: Analyze search backwards—from leaf to root
- Search starts at leaf (element in bottommost level)
- At each node visited:
* If node wasn't promoted higher (got TAils here), then we go [came from] left
* If node wasn't promoted higher (got HEADS here), then we go [came from] top
- Search stops at root of tree
- Know height is $O(\lg n)$ with high probability; say it's $c \lg n$
- Thus, the number of "up" moves is at most $c \lg n$ with high probability
- Thus, search cost is at most the following quantity:

How many times do we need to flip a coin to get $c \lg n$ heads?

- Intuitively, $\Theta(\lg n)$

Analysis: Coin Flipping

- Claim: Number of flips till $c \lg n$ heads is $\Theta(\lg n)$ with high probability
- Again, constant in $\Theta(\lg n)$ bound will depend on α
- Proof of claim:
- Say we make $10 c \lg n$ flips
- When are there at least $c \lg n$ heads?
$-\operatorname{Pr}[$ exactly $c \lg n$ heads $]=\underbrace{\binom{10 c \lg n}{c \lg n}}_{\substack{\text { orders } \\ \text { HннтT vs. HTHTHT }}} \cdot \underbrace{\left(\frac{1}{2}\right)^{c \lg n}}_{\text {heads }} \cdot \underbrace{\left(\frac{1}{2}\right)^{9 c \lg n}}_{\text {tails }}$
$-\operatorname{Pr}[$ at most $c \lg n$ heads $]=\underbrace{\binom{10 c \lg n}{c \lg n}}_{\substack{\text { overestimate } \\ \text { on orders }}} \cdot \underbrace{\left(\frac{1}{2}\right)^{9 c \lg n}}_{\text {tails }}$
- Recall bounds on $\binom{y}{x}$:

$$
\left(\frac{y}{x}\right)^{x} \leq\binom{ y}{x} \leq\left(e \frac{y}{x}\right)^{x}
$$

[Michael's "deathbed" formula: even on your deathbed, if someone gives you a binomial and says "simplify", you should know this!]

- Applying this formula to the previous equation:

$$
\begin{aligned}
\operatorname{Pr}[\text { at most } c \lg n \text { heads }] & \leq\binom{ 10 c \lg n}{c \lg n}\left(\frac{1}{2}\right)^{9 c \lg n} \\
& \leq\left(\frac{e \cdot 10 c \lg n}{c \lg n}\right)^{c \lg n} \cdot\left(\frac{1}{2}\right)^{9 c \lg n} \\
& =(10 e)^{c \lg n} \cdot\left(\frac{1}{2}\right)^{9 c \lg n} \\
& =2^{\lg (10 e) \cdot c \lg n} \cdot\left(\frac{1}{2}\right)^{9 c \lg n} \\
& =2^{(\lg (10 e)-9) c \lg n} \\
& =2^{-\alpha \lg n} \\
& =1 / n^{\alpha}
\end{aligned}
$$

- The point here is that, as $10 \rightarrow \infty, \alpha=9-\lg (10 e) \rightarrow \infty$, independent of (for all) c
- End of proof of claim and theorem

Acknowledgments

The mysterious "Michael" is Michael Bender at SUNY Stony Brook. This lecture is based on discussions with him.

