
Introduction to Algorithms October 7, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Quiz 1

Quiz 1
� Do not open this quiz booklet until you are directed to do so. Read all the instructions first.
� For this quiz, you need not provide rigorous proofs of correctness. Instead, give infor-

mal arguments for why you believe your algorithms are correct. Pseudocode is only
required when explicitly indicated, but you may include it if it clarifies your answers.

� When the quiz begins, write your name on every page of this quiz booklet.
� The quiz contains 5 multi-part problems. You have 80 minutes to earn 80 points.
� This quiz booklet contains 11 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your quiz.
� This quiz is closed book. You may use one handwritten A4 or

������ ���
	�	 � � crib sheet. No
calculators or programmable devices are permitted.

� Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Do not put part of the answer to one problem on the back of
the sheet for another problem, since the pages may be separated for grading.

� Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.

� Do not spend too much time on any one problem. Read them all through first, and attack
them in the order that allows you to make the most progress.

� Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

� Good luck!

Problem Points Grade Initials

1 12

2 12

3 30

4 13

5 13

Total 80

Name: Solutions
Circle the name of your recitation instructor:

Moses Jen Steve

6.046J/18.410J Quiz 1 Name 2

Problem 1. Recurrences [12 points]

Solve the following recurrences. Give tight, i.e. ������� , bounds.

(a) � � �	�
����
�� � �	�
��������� �
Solution: We use the Master Theorem: note that ����� �
�� 	 ������� , so the solution is� � �	�
�������	� �"!$#&%(')� .

(b) � � �	�
���+*-,.� � �	�
�/,0��� � �"#/1
Solution: First, notice that

� �"#21 � � �"#�3 (this can be seen by taking �4� of both
sides). Since �4���-5 *-,6� �4� � � 7 , we use case (ii) of the Master Theorem:� � �	�
�������	�98:�����;��� .

(c) � 8 �	�
������� 8 �<7-�
� � ���=� 8 �>���/,?���@*-�
Solution: We solve this recurrence by Akra-Bazzi, with AB� 	 . Then we get

� 8 �>���;�����	�DC 	 �@E 1� */FF ��G FIHJ�K�L���	��� 	 �@*��4MN�
�O�;�����	�P���������)Q

6.046J/18.410J Quiz 1 Name 3

Problem 2. Short Answer [12 points]

Give brief, but complete, answers to the following questions.

(a) Briefly describe the difference between a deterministic and a randomized algorithm,
and name two examples of algorithms that are not deterministic.

Solution: On identical inputs, a deterministic algorithm always performs exactly the
same computations and returns the same output. A randomized algorithm is one
which “flips coins,” i.e. one which makes random choices that may cause it to per-
form different computations, even on the same input. RANDOMIZED-QUICKSORT

and RANDOMIZED-SELECT are two examples of non-deterministic algorithms.

(b) Describe the difference between average-case and worst-case analysis of determinis-
tic algorithms, and give an example of a deterministic algorithm whose average-case
running time is different from its worst-case running time.

Solution: An average-case analysis assumes some distribution over the inputs (e.g.,
uniform), and computes the expected (average) running time of an algorithm subject
to that distribution. A worst-case analysis considers those inputs which force an al-
gorithm to run for the longest amount of time, and computes the running time under
those inputs. QUICKSORT has a worst-case running time of ���	� � � (on an already-
sorted or reverse-sorted array), but has an average-case running time of ���>�P�4�����
�
(assuming all input permutations are equally likely).

(c) If you can multiply 4-by-4 matrices using 48 scalar multiplications, can you multiply� � � matrices asymptotically faster than Strassen’s algorithm (which runs in ���	� �"#�� �
time)? Explain your answer.

Solution: Our algorithm breaks an � � � matrix into a 4-block by 4-block matrix
(where each block is ���2, � �
�/,). It then multiplies the appropriate blocks using
48 recursive calls (corresponding to the scalar multiplications) and combines their
products. Our new algorithm’s running time is � �	��� � , � � �>���/,0� �����	� � � , which is
���	� �"!$#�� 5 3 � by the Master Theorem. For comparison with Strassen’s algorithm, note
that �4��� ��� � �4�-� � % � � � �4��� 5 ,�� . Therefore our algorithm is asymptotically better.

6.046J/18.410J Quiz 1 Name 4

Problem 3. True or False, and Justify [30 points]

Circle T or F for each of the following statements, and briefly explain why. The better your
argument, the higher your grade, but be brief. Your justification is worth more points than your
true-or-false designation.

(a) T F Every comparison-based sort uses at most � �>�P�4���J��� comparisons in the worst
case.

Solution: False. INSERTION-SORT , for example, uses ���>� � ���� ���	�P����� ��� com-
parisons in the worst-case (a reverse-sorted array). The statement would be true
if it read “. . . at least � �	�P�����;��� comparisons in the worst case.”

(b) T F RADIX-SORT is stable if its auxiliary sorting routine is stable.

Solution: True. If two numbers are equal, then they have the same digits. Each
intermediate sort is stable, so the two equal numbers never change relative posi-
tions.

(c) T F It is possible to compute the smallest � � elements of an � -element array, in
sorted order, in � �>��� time.

Solution: True. We can SELECT the � � th smallest element and partition around
it, then sort those � � elements in � �>��� time. Alternately, we can build a min-
heap in � �>��� time and call EXTRACT-MIN � � times, for a total runtime of
���	� ��� �P�4�-�����;� � �>��� .
Some incorrect solutions amounted to: “we must do � � order statistic queries,
each of which take ���	�
� time, for a total running time of � �>� � ��� .” However,
this argument does not preclude us from coming up with a more clever algorithm
(like the one above) that is more efficient. In fact, a similar argument would
“prove” that sorting must take � �>� � � time (despite the existence of MERGESORT

etc.), because we must do � order statistic queries!

6.046J/18.410J Quiz 1 Name 5

(d) T F Consider hashing the universe � ������� Q Q Q��)�	��
 	
� , �D� � , into the hash table
����� 		� . Consider the family of hash functions � ���
� � � Q Q Q���� � � , where ���$�>F � is
the � th bit of the binary representation of F . Then � is universal.

Solution: False. Take F ������� � 	 . Then all of F ’s binary digits are the same as
� ’s, except for the least significant one. Thus �����! #"%$&� �>F �K��� �'� �)(:� �'�*
 	 �&�
� �
	 ��� . If � were universal, the probability would be at most 	 ��� .
Some incorrect solutions said that the probability of a collision, taken over ran-
dom choices of � , F , and � is 1/2. This is true, but the universality condition
demands something stronger: it says that for every fixed (distinct) pair F+��� , their
probability of collision over the random choice of � must be at most 1/2.

(e) T F RANDOMIZED-SELECT can be forced to run in � �	�P�����;��� time by choosing a
bad input array.

Solution: False. RANDOMIZED-SELECT runs in expected � �>��� time; the only
way it can take longer is if its random choices of pivots are unlucky. The input
array cannot force these unlucky choices.

(f) T F For every two functions , �>��� and -9�>��� , either , �	�
� � � �.-9�	���&� or -9�	�
�@�
���/, �>���&� .
Solution: False. Let , �	�
� �10324M � and -9�	�
� �54 �60I� ; then neither case holds.
Another example is , �	�
� � � � and -
�>���P� �87:9<; 1 . Finally, one could let , �	�
�
and -9�	�
� be any strictly-negative functions; by a technical condition of the defi-
nition, , �>��� must be at least 0 to be ���=-9�	�
�O� .
Many incorrect answers argued that one of the statements ,J�	���?>A@�-9�	�
� , ,J�	�����
@�-9�	�
� , or -9�	�
�B>1@#, �>��� must be true. This is correct for any particular value
of � , but it doesn’t mean that the same statement is true for all sufficiently large
values of � , which is the condition needed in the definition of big- � .

6.046J/18.410J Quiz 1 Name 6

(g) T F Suppose that we have a hash table with �/� slots, with collisions resolved by
chaining, and suppose that ����� keys are inserted into the table. Each key is
equally likely to be hashed into each slot (simple uniform hashing). Then the
expected number of keys for each slot is 	 �/, .

Solution: True. Define ��� (for � � 	 � Q Q Q � �
���) to be the indicator which is 1 if
element � hashes to slot � , and 0 otherwise. Then �B$�����(� ����$ ��� � 	 (
� 	 ���/� .
Then the expected number of elements in slot � is � $	� 1�
 ��
� � ����(9��� 1�
 ��
� � � $ ����(
��
�/,�� � 	 �2, by linearity of expectation.

(h) T F The following array � is a max-heap:

76���-
 � 	 � �/, � , � 	 �@����

Solution: False. See that � ��� $ 7
(���� $ � ��7
(;� �

, which is a violation of the
max-heap property.

(i) T F Suppose we use HEAPSORT instead of INSERTION-SORT as a subroutine of
BUCKET-SORT to sort � elements. Then BUCKET-SORT still runs in average-
case linear time, but its worst-case running time is now � �>�P�4��� �
� .
Solution: True. Even if all the elements land in the same bucket (the worst-case
input), HEAPSORT sorts them in ���	�P��������� time.

6.046J/18.410J Quiz 1 Name 7

(j) T F If memory is limited, one would prefer to sort using HEAPSORT instead of MERGESORT .

Solution: True. MERGESORT is not in-place, which means it requires an auxil-
iary array as big as the input. HEAPSORT is in-place, which means it only uses
��� 	 � auxiliary space.

6.046J/18.410J Quiz 1 Name 8

Problem 4. Perfect Powers [13 points]

You have just discovered a breakthrough result in number theory that will quickly become world-
famous, but there is one step left for you to complete. You need to find a fast algorithm to tell
whether a number � is a perfect power. That is, you want a fast algorithm which, on an input
integer � that is � bits long, finds whether there exist integers ��� � and ��� � such that � ����� .
If so, your algorithm should output the values of � and � .

(a) If � ��� � is a perfect power, how large can � be? Express your answer as a function
of � .

Solution: (First, some trivia: the scenario from this problem is entirely real! The
ground-breaking deterministic primality-testing algorithm by Agrawal et al, discov-
ered with great fanfare this past summer, performs the perfect-power test as one of its
first steps.)
[3 points] Note that �	� ��� � �
� ����� , and since ��� � , � >�� .
A common error was to write only � > 1�"#
� , which is insufficient because we asked for
� as a function of � , and also because the value of � (if any) is not known in advance.

(b) Suppose that your computer had an � � 	 � -time operation ROOT ��� � ��� that returns the
� th root of an integer � , if that root is an integer (and returns � otherwise). Give an
algorithm to solve the perfect-power problem and analyze its running time.

Solution: [5 points] We simply test all values of � up to � : for �@� 	 � Q Q Q��O� , if
ROOT � � ���(� ��� where � is an integer, then return the pair ��� ���(� . If no such root is
an integer, return � . The running time of this procedure is � �	�
� .
Some solutions looped over all possible values of both � and � , and only returned if
� � ROOT � � ���(� . This solution is wasteful, because ROOT returns the proper base,
so there is no need to guess it in advance. This solution is also too inefficient, because
� could be as large as � ��� � 1
 � , so an exponential number of iterations would be
peformed.

6.046J/18.410J Quiz 1 Name 9

(c) In reality, there is no such � � 	 � -time ROOT procedure. Still it is possible to solve
the perfect power problem in ���	� � �4�-�K�
� by using a suitable algorithm for ROOT.
Describe such an algorithm and analyze its running time. You may assume that mul-
tiplying two integers takes ��� 	 � time (no matter how large they are).

Solution: [5 points] We will implement a ROOT procedure that runs in time
���	�P�4�-����� when used in the above algorithm, so that we solve the perfect power
problem in � �>� � �4���;��� time. On input ��� � ��� , our ROOT procedure performs a binary
search for the � th root of � in the range $ �NQ Q��A(. When testing the midpoint � of the
range, if � � � � then we recursively search the upper half of the range; if � � ���
then we search the lower half; if � � ��� then we return � as the � th root of � .
In our usage of ROOT from the previous part, � � � > � 1 and � > � . Computing
each � � takes ���	��������� � � �>�4�����
� mulitiplications by the repeated-squaring tech-
nique from class, and the binary search does � �>�4������� � � �	�
� iterations, each with
one exponentiation, for the claimed runtime of � �>�P�4�����
� .
Many solutions did a brute-force search for � , but this is too inefficient. In the worst
case, � � � , so all values of � from 1 to � � � � � �6� 1�
 � would have to be
checked, which is an exponential number of tests. All exponential-time algorithms
received no points for this part.
Other incorrect solutions made mathematical errors: assuming that the � th root of
� must be smaller than �4�-� � � , or returning ����� � � by repeatedly dividing � by �
or multiplying � by itself (this treats � as the base, instead of its proper role as the
exponent).

6.046J/18.410J Quiz 1 Name 10

Problem 5. Assigning Grades [13 points]

It is the not-too-distant-future, and you are a computer science professor at a prestigious north-
eastern technical institute. After teaching your course, “6.66: Algorithms from Hell,” you have to
assign a letter grade to each student based on his or her unique total score. (Scores can only be
compared to each other.) You are grading on a curve, and there are a total of

�
different grades

possible. You want to rearrange the students into
�

equal-sized groups, such that everybody in the
top group has a higher score than everybody in the second group, etc. However, you don’t care
how the students are ordered within each group (because they will all receive the same grade).

(a) Describe and analyze a simple algorithm that takes an unsorted � -element array � of
scores and an integer

�
, and divides � into

�
equal-sized groups, as described above.

Your algorithm should run in time ���	� � � . (If you find a faster algorithm, see part (c).)
You may assume that � is divisible by

�
. Note:

�
is an input to the algorithm, not a

fixed constant.

Solution: [5 points] Our algorithm first uses SELECT to find the �
� �
th order statistic,

then partitions around it. At this point, the first ��� �
elements of the array form the

bottom group. Then it uses SELECT to find the �
� �
th order statistic of the remainder of

the array, and partitions around it, etc., until all the groups have been separated. Each
SELECT and PARTITION requires linear time in the number of remaining elements,
which is at most � , so the running time is � �>� � � .

6.046J/18.410J Quiz 1 Name 11

(b) In the case that
� � � , prove that any algorithm to solve this problem must run in time

� �>�P�4��� � � in the worst case. Recall that we are only considering comparison-based
algorithms, i.e., algorithms that only compare scores to each other as a way of finding
information about the input. Hint: There is a very short proof.

Solution: [3 points] Any algorithm for this problem can fully sort an array of � ele-
ments if we provide it with an input where

� � � . Since sorting requires � �	�P���K�
�
comparisons in the worst case, the algorithm must run in time � �>�P�4�;����� � �	�P��� � �
in the worst case.

(c) Now describe and analyze an algorithm for this problem that runs in time � �>�P�4��� � � .
You may also assume that

�
is a power of � , in addition to assuming that � is divisible

by
�
.

Solution: [5 points] We use a recursive algorithm GROUP, which takes an array and a
value

�
, and works as follows: if

� � 	 , return. Otherwise, SELECT and PARTITION

around the median of the array. Then call GROUP on the lower half of the array with
� �-� , and again on the top half with

� ��� .
To see that this works, note that after partitioning, all grades in the upper half of the
array are greater than those in the lower half. By induction, the two recursive calls
divide each half into

� ��� groups, for a total of
�

groups. Finally, note that the base
case satisfies the problem statement.
We now analyze the running time: the recurrence describing the algorithm’s running
time is � �	�*� � �K� �2� �	�
����� � �-����� ���	�
� because SELECT and PARTITION are linear-
time. The base case of the recurrence is � �	�*� 	 � � ��� 	 � for any � . Therefore the
recurrence tree does ���>��� work at each level, and has �4� �

levels, for a total running
time of � �>�P�4��� � � .
Some students correctly observed that this solution is essentially an “early quitting”
QUICKSORT , where the pivot is always chosen to be the median, and the algorithm
terminates once the recursion depth reaches �4� �

.

SCRATCH PAPER — Please detach this page before handing in your quiz.

SCRATCH PAPER — Please detach this page before handing in your quiz.

