6.045J/18.400J: Automata, Computability and Complexity

Prof. Nancy Lynch

Recitation 7: Reducibility, Rice's Theorem

March 22, 2007

Elena Grigorescu

Problem 1: These are the key concepts from lecture this week:

- 1. Mapping Reducibility pages 189-194 (make sure you understand Theorems 5.16, 5.17, 5.22, and 5.23)
- 2. Rice's Theorem

Problem 2: Give yourself the following test, then check your answers on the back of the handout. Classify each of the following problems as either

- (D) decidable,
- (**R**) recognizable but not decidable,
- (C) co-recognizable but not decidable, or
- (N) neither recognizable nor co-recognizable,

and indicate which undecidable examples follow from Rice's Theorem.

- 1. EQ_{NFA} , the Equivalence problem for NFA's.
- 2. $\{\langle M \rangle | M \text{ is a Turing Machine that runs for at least } n \text{ steps when started with a blank input tape, where } n \text{ is the length of the string } \langle M \rangle \}.$
- 3. $\{\langle M \rangle | M \text{ is a Turing Machine that accepts at least two inputs} \}$.
- 4. EQ_{TM}

Problem 3: (Mapping Reducibility) Answer the following True or False:

- 6. A_{TM} is mapping reducible to E_{TM} .
- 7. $A_{TM} \leq_m 0^* 1^*$.

Problem 4:(Applications of Rice's Theorem and Mapping Reducibility)

1. Let $L_1 = \{ \langle M \rangle | M \text{ accepts } 01 \text{ in a perfect number of steps } \}$. Show that L is undecidable. Does Rice's Theorem apply?

Answer: Rice doesn't apply. Show that $A01 \leq_m L$.

2. Let $L_2 = \{ \langle M \rangle | L(M) \text{ is recognized by a TM having an even number of states. } \}$. Show that L_2 is decidable.

Answer: Even though we have a language property, notice that any language has the property, so Rice's Thm doesn't apply.

3. Let $L_3 = \{ \langle M \rangle | L(M) \text{ is not regular } \}$. Show that L_3 is undecidable.

Answer: Rice's Thm applies.

Problem 5: (Rice's Theorem and Mapping Reducibility) Consider the problem of testing whether a Turing machine *M* accepts any binary string with an odd number of zeros.

- 1. Formulate this problem as a language; call it *ODDZ*.
- 2. Show that ODDZ is undecidable.

Answer: Use Rice's Theorem, show hypotheses are satisfied.

3. Is ODDZ Turing-recognizable? Prove your answer.

Answer: Yes, by running the TM in parallel (i.e., using the dove-tailing technique from class) on all inputs strings with an odd number of zeros until it accepts.

4. Is ODDZ co-Turing-recognizable? Prove your answer.

Answer: no, undecidable, but recognizable

Problem 2 Solutions:

- 1. D; recall the EQ_{DFA} algorithm from textbook.
- 2. D; just simulate M for up to $|\langle M \rangle|$ steps.
- 3. R; Undecidable by Rice's Theorem; Recognizable by running the TM in parallel (i.e., using the dovetailing technique from class) on all input strings until it accepts two strings.
- 4. N; Undecidable by Rice's Theorem; Neither recognizable nor co-recognizable from textbook.

Problem 3 Solutions:

- 1. False; A_{TM} is recognizable, E_{TM} is not. See Corollary 5.17.
- 2. False; 0^*1^* is decidable, A_{TM} is not. See Theorem 5.16.