Recitation 6: Decidability and Undecidability

March 15, 2007

Elena Grigorescu

Problem 1: These are the key concepts from lecture this week:

- 1. Undecidability p. 172-176 have great example proofs.
- 2. Reductions p. 171-172 will help with the terminology (e.g., "reduce A from B", etc.)
- 3. Computation history p. 176, 179, 185 give the definition and some examples.
- 4. Diagonalization method p. 160-168. This concept is both elegant and difficult; make sure you understand it.

Problem 2: Show that the following languages are undecidable:

- 1. $DECID_{TM} = \{ < M > | M \text{ halts on any input in accept or reject} \}$
- 2. $L = \{ \langle M \rangle : M \text{ is a Turing machine and } M \text{ accepts exactly the strings in } \Sigma^* \text{ whose length is a power of } 2 \}.$

Problem 3: Show that the following language is undecidable:

 $EQ_{TM} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are TMs such that } L(M) = L(N) \}$

Reduce from both E_{TM} and A_{TM} . Recall that EQ_{DFA} was decidable.

Solution 3: In class we saw how to reduce E_{TM} to EQ_{TM} . Here we will reduce from A_{TM} to prove that EQ_{TM} is undecidable. Let D be a TM that decides EQ_{TM} . We could then construct a decider S for A_{TM} as follows.

S="On input < M, w >, an encoding of a TM M and a string w,

- 1. Construct TM R_1 from M and w and TM R_2 as detailed below.
- 2. Run *D* on $< R_1, R_2 >$.
- 3. If D accepts, reject; otherwise, accept."

 R_1 ="On input x,

- 1. Run M on w.
- 2. If M accepts, accept"

Notice that R_2 is the TM that we constructed when we proved EQ_{TM} was undecidable by reducing from E_{TM} (i.e., $L(R_1) = \emptyset$).

 R_2 ="On input x,

1. reject."

Thus, we contrive that $L(R_1) = \emptyset$ if and only if M rejects w, while $L(R_2) = \emptyset$ always. Since, by assumption, we have a decider D that tells us if these two machines recognize the same language, we know that if D rejects R_1 and R_2 , then this implies that M accepts w.

Problem 4: (From Sipser, problems 5.17 and 5.18) Consider the Post Correspondence Problem over small alphabets.

- 1. Show that the problem is decidable over the unary alphabet $\{0\}$.
- 2. Show that the problem is undecidable over the binary alphabet $\{0,1\}$ (bPCP).

Solution 4: 1. Sketch of Proof: We prove it is decidable, by giving an algorithm that decides it. Each

domino d_i in the set has a top portion of 0^{k_i} and a bottom portion of 0^{m_i} for some $k_i, m_i \ge 0$. Lets consider the values $c_i = k_i - m_i$:

- 1. If c_i for some domino, accept. [That single domino is a match.]
- 2. If $c_i > 0$ for all dominos, reject.
- 3. If $c_i < 0$ for all dominos, reject.
- 4. If $c_i > 0$ and $c_j < 0$ for $i \neq j$, then accept. [You can even these out.]

2. Sketch of Proof: We prove it is undecidable by reducing from PCP (over an arbitrary alphabet Σ).

Assume a TM D that decides bPCP. Build a TM S to decide PCP.

S="On input $\langle d_1, d_2, \ldots, d_k \rangle$, where each d_i is a domino,

- 1. Count the number of different symbols on the dominos: $|\Sigma|$.
- 2. Assign to each unique symbol a unique (iterative) m-bit (or you could also reduce this to a log(m)-bit) value. Front-pad with zeros.
- 3. Construct new dominos $\langle d'_1, d'_2, \ldots, d'_k \rangle$ using the binary encoding.
- 4. Run *D* on $< d'_1, d'_2, \ldots, d'_k >$.
- 5. If D accepts, accept; otherwise, reject."

We know that the number of symbols counted in step 1 is finite, since the number and content of each domino is finite. By giving unique binary encodings *of equal length* to each domino, the problem reduces nicely. Observe that this would not necessarily be true if our encoding for each unique symbol was allowed to be of different lengths. \blacksquare