Recitation 4: Distinguishable strings and indices

February 29, 2007
Elena Grigorescu

Problem 1: Quiz Questions?

Problem 2: Recall quiz question: Argue that does not exist a DFA with just 3 states that recognizes $\Sigma^{*} 1 \cup 00 *$, by showing that $\epsilon, 0,1,10$ must lead to different states.

In this recitation we will see a more general characterization of the minimum number of states of a machine.
Problem 3: Equivalence Classes. Let x and y be strings and let L be any language (not necessarily regular). We say that x and y are distinguishable by L if some string z exists such that exactly one of the strings $x z$ and $y z$ is in L. In the opposite case, if for all strings $z, x z$ is in L if and only if $y z$ is in L, we say that x and y are indistinguishable by L. If x and y are indistinguishable by L, we write $x \equiv_{L} y$.

Let L be a language and X a set of strings. We say that X is pairwise distinguishable by L if every two distinct strings in X are distinguishable by L. Define the index of L to be the maximum number of elements in any set that is pairwise distinguishable by L. In other words, the index of L is equal to the number of equivalence classes in L, which may be finite or infinite.

Let's compute indices and classes of equivalence of some languages:

1. $L_{1}=(0 \cup 1)^{*}$.

Answer: index is 1 ; the equivalence class is $(0 \cup 1)^{*}$
2. The language from Problem 2: $L_{2}=\Sigma^{*} 1 \cup 00 *$.

Answer: index is 4 ; equivalence classes: $\Sigma^{*} 1,00^{*}, \Sigma^{*} 1 \Sigma^{*} 0, \epsilon$
3. $L_{3}=(001 \cup 110)^{*}$.

Answer: index is 6; equivalence classes: $(001 \cup 110)^{*},(001 \cup 110)^{*} 0,(001 \cup 110)^{*} 00,(001 \cup$ $110)^{*} 1,(001 \cup 110)^{*} 11$, and the class formed by the rest of strings in Σ^{*}.

Can we build a DFA for L_{3} with less states than the index of L ?

