Homework 4

Due: Monday, March 5, 5PM

Problem 1: Distinguishable strings and indices (From Sipser Problems 1.51 and 1.52)
Let x and y be strings and let L be any language (not necessarily regular). We say that x and y are distinguishable by L if some string z exists such that exactly one of the strings $x z$ and $y z$ is in L. In the opposite case, if for all strings $z, x z$ is in L if and only if $y z$ is in L, we say that x and y are indistinguishable by L. If x and y are indistinguishable by L, we write $x \equiv_{L} y$.
(a) Show that \equiv_{L} is an equivalence relation.

Let L be a language and X a set of strings. We say that X is pairwise distinguishable by L if every two distinct strings in X are distinguishable by L. Define the index of L to be the maximum number of elements in any set that is pairwise distinguishable by L. In other words, the index of L is equal to the number of equivalence classes in L, which may be finite or infinite.
(b) Let L_{1} be the regular language $(001)^{*} 00$. What is the index of L_{1} ? Describe the equivalence classes.
(c) Build a DFA for L_{1} with states corresponding to the equivalence classes (i.e., the number is states is equal to the index of L_{1}).
(d) Let L_{2} be the non-regular language $\left\{0^{n} 1^{n}: n \geq 1\right\}$. What is the index of L_{2} ? Describe the equivalence classes.
(e) Now consider an arbitrary language L. Prove that if L is recognized by a DFA with k states, then L has index at most k.
(f) Again consider an arbitrary language L. For L with index k, show how to construct a DFA with k states.

We can conclude from this problem that a language L is regular if and only if it has a finite index. Moreover, its index is the size of the smallest DFA recognizing it.

