Homework 12

Due: May 7, 2007
Elena Grigorescu

Readings: Section 9.1, 9.2
Problem 1: Sipser 9.13 Let $p a d(s, l)$ be the function that adds enough copies of the symbol \# to the end of the string s so that the length of the result is at least l. For any language A and function $f: \mathbb{N} \rightarrow \mathbb{N}$ define the language

$$
\operatorname{pad}(A, f(m))=\{\operatorname{pad}(s, f(m)) \mid \text { where } s \in A, m \text { is the length of } s\}
$$

Prove that if $A \in \operatorname{TIME}\left(n^{6}\right)$ then $\operatorname{pad}\left(A, n^{2}\right) \in \operatorname{TIME}\left(n^{3}\right)$.
Problem 2: Sipser 9.14 Prove that, if NEXPTIME $\neq E X P T I M E$ then $P \neq N P$.
Problem 3: Sipser 9.19 Define the unique-sat problem to be
$U S A T=\{\langle\phi\rangle \mid \phi$ is a Boolean formula that has a single satisfying assignment $\}$.
Show that $U S A T \in P^{S A T}$.

