Readings: Sipser, Section 10.2.
Problem 1: Sipser problem 10.11. Let M be a probabilistic polynomial time TM and let C be a language where, for some fixed $0<\epsilon_{1}<\epsilon_{2}<1$,

1. $w \notin C$ implies $\operatorname{Pr}[\mathrm{M}$ acceps w$] \leq \epsilon_{1}$
2. $w \in C$ implies $\operatorname{Pr}[M$ accepts w$] \geq \epsilon_{2}$.

Show that $C \in B P P$. (Hint: Use Lemma 10.5)
Problem 2: Define the language class PP as follows: A language $L \in \mathrm{PP}$ if and only if there exists a probabilistic polynomial time Turing machine such that:

- If $w \in L$, then $\operatorname{Pr}[M$ accepts $w] \geq \frac{1}{2}$.
- If $w \notin L$, then $\operatorname{Pr}[M$ accepts $w]<\frac{1}{2}$.

Prove that:

1. $\mathrm{BPP} \subseteq \mathrm{PP}$.
2. $\mathrm{NP} \subseteq \mathrm{PP}$.
3. $\mathrm{PP} \subseteq \mathrm{PSPACE}$.

Hint for (2): Consider a nondeterministic TM for L, and replace rejections with probabilistic decisions.
Problem 3: Use the Fermat test to prove that the following numbers are not prime:

1. 12
2. 15

Problem 4: (Fermat's test) Sipser problem 10.15. Prove Fermat's little theorem. That is, prove that

$$
\text { If } p \text { is prime, and } a \in \mathbb{Z}_{p}^{+}, \text {then } a^{p-1} \equiv 1(\bmod p)
$$

(Hint: Consider the sequence a, a^{2}, \ldots What must happen, and how ?)
Problem 5: (Branching program example) Show that the majority function can be computed by a branching program that has $O\left(n^{2}\right)$ nodes.

Problem 6: (Branching program equivalence test)

1. Give a read-once branching program B_{1} that computes the function of three Boolean variables, x_{1}, x_{2}, and x_{3}, that has value 1 if and only if exactly one or exactly three of the variables have value 1 .
2. Give a different read-once branching program B_{2} that computes the same function as in part (a).
3. Compute the polynomials p_{1} and p_{2} associated with the output 1 box for programs B_{1} and B_{2}, respectively, using the rules given in Sipser's book, p. 378.
4. Choose arbitrary values from Z_{7} for the three variables, and evaluate p_{1} and p_{2} to check that they indeed give the same result.
