Homework 12.2 (Fake)

Due: Never

Elena Grigorescu

Readings: Sipser, Section 10.2.

Problem 1: Sipser problem 10.11. Let M be a probabilistic polynomial time TM and let C be a language where, for some fixed $0 < \epsilon_1 < \epsilon_2 < 1$,

- 1. $w \notin C$ implies $\Pr[M \text{ acceps } w] \leq \epsilon_1$
- 2. $w \in C$ implies $\Pr[M \text{ accepts } w] \geq \epsilon_2$.

Show that $C \in BPP$. (Hint: Use Lemma 10.5)

Problem 2: Define the language class PP as follows: A language $L \in PP$ if and only if there exists a probabilistic polynomial time Turing machine such that:

 $\begin{array}{l} \cdot \ \, \mathrm{If} \ w \in L, \ \mathrm{then} \ \mathrm{Pr}[M \ \mathrm{accepts} \ w] \geq \frac{1}{2}. \\ \cdot \ \, \mathrm{If} \ w \not\in L, \ \mathrm{then} \ \mathrm{Pr}[M \ \mathrm{accepts} \ w] < \frac{1}{2}. \end{array}$

Prove that:

1. BPP \subseteq PP. 2. NP \subseteq PP. 3. PP \subseteq PSPACE.

Hint for (2): Consider a nondeterministic TM for L, and replace rejections with probabilistic decisions. **Problem 3**: Use the Fermat test to prove that the following numbers are not prime:

 $1.\ 12$

2. 15

Problem 4: (Fermat's test) Sipser problem 10.15. Prove Fermat's little theorem. That is, prove that

If p is prime, and $a \in \mathbb{Z}_p^+$, then $a^{p-1} \equiv 1 \pmod{p}$

(Hint: Consider the sequence a, a^2, \ldots What must happen, and how ?)

Problem 5: (Branching program example) Show that the majority function can be computed by a branching program that has $O(n^2)$ nodes.

Problem 6: (Branching program equivalence test)

- 1. Give a read-once branching program B_1 that computes the function of three Boolean variables, x_1, x_2 , and x_3 , that has value 1 if and only if exactly one or exactly three of the variables have value 1.
- 2. Give a different read-once branching program B_2 that computes the same function as in part (a).

12.2 (Fake)-1

- 3. Compute the polynomials p_1 and p_2 associated with the output 1 box for programs B_1 and B_2 , respectively, using the rules given in Sipser's book, p. 378.
- 4. Choose arbitrary values from Z_7 for the three variables, and evaluate p_1 and p_2 to check that they indeed give the same result.