6.045J/18.400J: Automata, Computability and Complexity Prof. Nancy Lynch

6.045 Practice Final Exam
May 16, 2007 Elena Grigorescu

Name:

e Please write your name on each page.
e This exam is open book, open notes.

e There are two sheets of scratch paper at the end of this exam.

Questions vary substantially in difficulty. Use your timeardingly.

If you cannot produce a full proof, clearly state partialuis for partial credit.

Good luck!

Part | Problem| Points| Grade]

Part | 1-10 50
1 20

2 15

3 25

Part Il 4 15
5 15

6 10
Total 150
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Part |

Multiple Choice Questions. (50 points, 5 pointsfor each question)
For each question, any number of the listed answers may lbeatdClearly place an “X” in the box next to
each of the answers that you are selecting.

Problem 1: Which of the following are true statements about regulat aanregular languages? (All lan-
guages are over the alphaljét 1})

|:| If L1 C Lo andLs is regular, therl.; must be regular.

|:| If L, andL, are nonregular, theh; U L, must be nonregular.

|:| If Ly is nonregular, then the complementlof must also be nonregular.

|:| If L, is regular,L5 is nonregular, and.; N L is nonregular, the; U Lo must be nonregular.

|:| If L1 isregular,Ls is nonregular, and.; N Lo is regular, then,; U Ly, must be nonregular.

Problem 2: Which of the following are guaranteed to be regular langs®)

|:| Ly = {ww : w e {0,1}*}.

|:| Ly = {ww : w € Ly}, whereL, is a regular language.

|:| Ly = {w: ww € Ly}, whereL, is a regular language.

|:| Ly = {w: forsomez , |w| = |z| andwz € L1}, whereL, is a regular language.

|:| Ly ={w: w € Ly and no proper prefix of is in L, }, whereL, is a regular language.

Problem 3: Which of the following are known to be true?

|:| If a languagel is recognized by an NFA, theh s also recognized by some DFA.

|:| If a languagel is recognized by a nondeterministic Turing machine, then also recognized
by some deterministic Turing machine.

|:| If alanguagéd. is decided by a nondeterministic Turing machine, thds also decided by some
deterministic Turing machine.

|:| If a languagel is decided in polynomial time by a nondeterministic Turingahine therl. is
also decided in polynomial time by some deterministic Tgmmachine.

|:| If a languageL is decided in log space by a nondeterministic Turing mackivea L is also
decided in log space by some deterministic Turing machine.



Problem 4: Which of the following languages are undecidable ?

[] CLIQUE

|:| {(M) : Mis a Turing machine and (M) = CLIQUE}
|:| {(M) : M is a Turing machine that recognizes a nonempty langhage
|:| {{(M) : M is a Turing machine that recognizes an NP-complete language

|:| {(M) : M is a Turing machine that recognizes a language that is ategrezed by some other
Turing machineM’ with an even number of states

Problem 5: Which of the following are true statements about Turingegnizable languages?

|:| If L, and L, are both Turing-recognizable languages, then their uniwhtheir intersection
must also be Turing-recognizable.

|:| There exists a languagesuch that neithef, nor L is Turing-recognizable.

|:| If L is Turing-recognizable but not Turing-decidable, then @aying machine that recognizes
L must loop (fail to halt) on infinitely many inputs.

|:| If L, andL- are nontrivial languages (not equalfter {0, 1}*), L, is Turing-recognizable, and
L, is decidable, then it must be the case that Ly <,,, L;.

|:| If L, is Turing-recognizable for every> 1, thenlJ;=, L; is Turing-recognizable.

Problem 6: The following construction uses the Recursion Theoremamdssumed decider Turing ma-
chine D for some language (sef) of Turing machines, to construct a new Turing machitie

R: “Oninputa:
Obtain(R).
RunD on input(R).
If D accepts then reject; otherwise accept.”

This construction yields immediate undecidability resdtir several different languagdsof Turing ma-
chines. Which of the following are examples of such langs&ge

|:| L = {{(M) : Maccepts all input strings
|:| L= {(M) : M accepts some input striiig
|:| L = {(M) : M accepts the string0}

|:| L = {(M) : M does not accept the strifg }

|:| L = {(M) : M accepts the string0 and does not accept the strihg}



Problem 7: Which of the following are known to be true?

[] 3SAT <, 2SAT

[] 2SAT <, 3SAT

[ ] PCP <, UNDIRECTED-HAMILTONIAN-CIRCUIT

[ ] VERTEX-COVER <, UNDIRECTED-HAMILTONIAN-CIRCUIT

|:| TOBF <, PATH U DIRECTED-HAMILTONIAN-CIRCUIT

Problem 8: Which of the following are true statements about spaceatded complexity?

|:| It is known thatT'OTxr 4, the totality problem for nondeterministic finite automats in
PSPACE.

|:| Savitch’s theorem implies that NSPACFIog ) C SPACHlogn).
|:| TQBF is NL-complete.
|:| Itis known that PATH is in L.

|:| CLIQUE < VERTEX — COVER

Problem 9: Which of the following are true statements about the prbaf NL = coNL that was presented
in class (and appears in Section 8.6 of Sipser’'s book)?

|:| On every branch of the nondeterministic algorithm, evergialde ¢; gets set to the correct
number of vertices reachable fromn G in i steps by paths of length at mast

|:| On some branch of the algorithm, everygets set to the correct number of vertices reachable
from s in G in i steps by paths of length at mast

|:| When the algorithm reaches its second phase (starting imghll2 in the code on p. 328), the
value ofc,, is guaranteed to be equal to the total number of verticesatleateachable from in
G, by paths of any length.

|:| If we omit line 14, which allows the algorithm to choose notiministically to skip some steps,
then the algorithm still works correctly but may take longecomplete.

|:| This construction can be easily modified to prove tNa? = coN P.



Problem 10: Which of the following are known to be true statements alpoimality testing?

|:| PRIMES € BPP
|:| COMPOSITES € RP
|:| PRIMES € P

|:| Fermat’s Little Theorem implies that every composite numbfails the Fermat test. That is,
does not satisfy the equatiafi~! = 1 (mod c) for somea € {1,...,c— 1}.

|:| Every non-Carmichael composite number fails the Fermatfeesat least half of the possible
choices of the base



SCRATCH PAPER 1



Part ||

Problem 1: (Fallacies Abound)

(a) Pumping lemma (10 points) Here is a “proof”, using the pumping lemma, that the languagef
all strings of0s andls of length100 is not regular. Since the result being “proved” is false falite
languages are regular), the proof cannot be correct. Whhaeiiaw in the proof?

“Assume for the sake of contradiction thatis regular. By the pumping lemma, if we choose an
element ofL, sayw = 0'°°, there are strings, y, andz, with |y| > 0, so that every string of the
form zy* 2 (wherek > 0) is in L. Since there are infinitely many different strings of thisnfip this
contradicts the fact thdt is finite. Therefore[ is not regular.”




(b) NP-Completeness of #A-SAT (10 points)
Let ¢ be a cnf-formula. A%-assignment to the variables of is one where each clause contains two
literals with unequal truth values. In other wordstaassigment satisfieg without assigning all the
literals in any clause to true. In other word&;SAT =

{#| ¢isacnf-formula and there is-assignment that satisfieg.

Forinstanceg = (z1 V2 Vas) A (T1 VT2 VT3) A (21 VT2 V x3) has a satisfyingt-assignment given
by x, = true, x5 = false, andx3; = false.

Sally, a 6.045 student, knows th&tSAT is N P-complete. To convince Harry, a 6.046-expert, that
this is indeed true, she gives the following reduction freMF-SAT to #-SAT.

“Given a formulag with k clauses’;, Cs, .. ., Cy, compute the formulg(¢) as follows: Introduce
a new variablex and let the claus€, = C; A x. The formulaf(¢) is an AND of the clauses
C1,C, ..., C). Thatis, the reduction adds tkaeme dummy variable: to every clause.”

Sally claims that this is a valid reduction from CNF-SAT=eSAT, and it serves to prove thet-SAT
is N P-hard. Harry thinks Sally is lying, since he observes thatftrmulaf(¢) is trivially satisfied
by the assignment = true. Whose side would you take in this argument, and why ?




Problem 2: 42-Minimal machines (15 points) Let’s define an (ordinary, one-tape) Turing machivieto
be 42-minimal if there is no (ordinary, one-tape) Turing machihg that recognizes the same language as
M and has a representation smaller thgrtimes the size of the representationiat

(a) Isit decidable whether or not a given representatiai of a Turing machine id2-minimal ?

(b) If your answer to (a) above is yes, then describe an dlyaorio decidel2-minimality; if it is no, prove
that no such algorithm exists.




Problem 3: Vacation packing (25 points) Harry, an MIT senior, is packing his backpack for his summer
trip to the Amazon Jungle. He discovers that he can carry 42lgounds. He would like to take many items,
including bug spray, hairspray, his iPod, underwear, aatetry of languages spoken by native tribes, his
teddy bear, etc. They total much more than 42 pounds. Hatmgaviing trouble figuring out which ones to
take.

Since he has taken 6.046 but not 6.045, Harry decides toaleaajeneral algorithm to solve the problem.
He formulates the problem, in terms of a getf items, each with a “weightiv(¢) and a “value™v (). His
problem is, given a sef of items with weights and values, and a maximum weifht to determine the
maximum total value that can be achieved with items whose vetight is at mosi/.

(a) Define Harry’soptimization problem formally.

(b) Define formally alanguage problem BACKPACK, which expresses the question of whether a given
value can be achieved within a given weight.




(c) Prove that the resulting problem is NP-complete (thgdmolishing Harry’s hopes of obtaining an
easy, general solution).




(d) Explain how, if Harry could query an “oracle” for the BAGRACK language decision problem for free,
he could solve his optimization problem in polynomial time.




Problem 4: Generalized Checkers (15 points) Define Generalized-Checkers to be the set of winning
positions for the first player in a checker game played on asgjcheckerboard of any sizex n, wheren
is an even number.

More precisely, we defineosition of ann x n checkerboard to be any placement of at n{gst-1) 5 red
checkers and at mogf — 1) % black checkers on the red squares of the checkerboard, withvacheckers
occupying the same square. Also, any number of the checlaydmdesignated as “kings”.

We assume that the first player owns the black checkers anhtiifaer home side of the board is the top
of the board. The rules are the usual ones for check@vs.defineGeneralized-Checkers as the language

{(n, P) : P is a position of am x n checkerboard in which the first player has a winning strategy

(a) Describe a polynomial-space algorithm to decide thguageGeneralized-Checkers.

1Review: In one turn a player may move a single checker onersgiiagonally to an unoccupied square, or may cause a single
checker to make a series of one or more jumps over the oppsméeckers, to unoccupied squares on the other side. Otlseitict are
jumped over are removed. Non-king checkers may only moverapjin diagonal directions from the player's home side oftibard
to the other side, but kings can move or jump in any diagorrakction. A non-king gets promoted to a king if it reaches thpanent’s
first row. A player wins when he/she removes all the opposestteckers.



(b) Show that your algorithm indeed uses polynomial spacgitiyg an upper bound on the space used
by your algorithm.




Problem 5: Acceptance problem for NFAs (15 points) Let the languagéel v =4 be the acceptance problem
for NFAs, that is,Aypa = {(M,w) | M is an NFA andw is a word accepted by/ }.

(a) Showthatd yr 4 isinthe class NL, by describing an algorithm. Be sure to aixplvhy your algorithm
in fact works in nondeterministic log space.




(b) Prove thatd x4 is NL-hard, using a reduction from another problem we alygdatbw is NL-hard.




Problem 6: Randomized complexity classes (10 points) Suppose thak is a language ovef0, 1}.
Suppose thad/ is a probabilistic Turing machine that, on eversyc {0, 1}*, on every computation branch,
outputs one ofaccept, reject, don’t-knojv Suppose that, for every word € {0, 1}*:

() If w € L then: the probability thal/ outputs “accept” is at Iea§4t, the probability thatV outputs
“reject” is 0, and the probability that/ outputs “unknown” is at mos}.

(i) If w ¢ L then: the probability thal/ outputs “reject” is at Ieasﬁ, the probability that)/ outputs
“accept” is at mos%, and the probability that/ outputs “unknown” is at mosg.

Assume that there exists such a Turing Machidehat decided..

(a) Give an algorithm to decide membershiginhat demonstrates thate BPP. (Use the definition of
BPP from Sipser, p. 369, which says that the error probghgiat mostt, for every input.)

(b) Prove that your algorithm shows thiate BPP.




(c) Does your algorithm also demonstrate thas in RP? Why or why not?

(d) Does your algorithm also demonstrate thas in coRP ? Why or why not?




END OF EXAM.
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