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• Please write your name on each page.

• This exam is open book, open notes.

• There are two sheets of scratch paper at the end of this exam.

• Questions vary substantially in difficulty. Use your time accordingly.

• If you cannot produce a full proof, clearly state partial results for partial credit.

• Good luck!

Part Problem Points Grade

Part I 1–10 50

1 20

2 15

3 25

Part II 4 15

5 15

6 10

Total 150

PF-1
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Part I

Multiple Choice Questions. (50 points, 5 points for each question)
For each question, any number of the listed answers may be correct.Clearly place an “X” in the box next to
each of the answers that you are selecting.

Problem 1: Which of the following are true statements about regular and nonregular languages? (All lan-
guages are over the alphabet{0, 1})

If L1 ⊆ L2 andL2 is regular, thenL1 must be regular.

If L1 andL2 are nonregular, thenL1 ∪ L2 must be nonregular.

If L1 is nonregular, then the complement ofL1 must also be nonregular.

If L1 is regular,L2 is nonregular, andL1 ∩ L2 is nonregular, thenL1 ∪ L2 must be nonregular.

If L1 is regular,L2 is nonregular, andL1 ∩ L2 is regular, thenL1 ∪ L2 must be nonregular.

Problem 2: Which of the following are guaranteed to be regular languages ?

L2 = {ww : w ∈ {0, 1}∗}.

L2 = {ww : w ∈ L1}, whereL1 is a regular language.

L2 = {w : ww ∈ L1}, whereL1 is a regular language.

L2 = {w : for somex , |w| = |x| andwx ∈ L1}, whereL1 is a regular language.

L2 = {w : w ∈ L1 and no proper prefix ofw is in L1}, whereL1 is a regular language.

Problem 3: Which of the following are known to be true?

If a languageL is recognized by an NFA, thenL is also recognized by some DFA.

If a languageL is recognized by a nondeterministic Turing machine, thenL is also recognized
by some deterministic Turing machine.

If a languageL is decided by a nondeterministic Turing machine, thenL is also decided by some
deterministic Turing machine.

If a languageL is decided in polynomial time by a nondeterministic Turing machine thenL is
also decided in polynomial time by some deterministic Turing machine.

If a languageL is decided in log space by a nondeterministic Turing machinethenL is also
decided in log space by some deterministic Turing machine.
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Problem 4: Which of the following languages are undecidable ?

CLIQUE

{〈M〉 : M is a Turing machine andL(M) = CLIQUE}

{〈M〉 : M is a Turing machine that recognizes a nonempty language}.

{〈M〉 : M is a Turing machine that recognizes an NP-complete language}

{〈M〉 : M is a Turing machine that recognizes a language that is also recognized by some other
Turing machineM ′ with an even number of states}.

Problem 5: Which of the following are true statements about Turing-recognizable languages?

If L1 andL2 are both Turing-recognizable languages, then their union and their intersection
must also be Turing-recognizable.

There exists a languageL such that neitherL nor L̄ is Turing-recognizable.

If L is Turing-recognizable but not Turing-decidable, then anyTuring machine that recognizes
L must loop (fail to halt) on infinitely many inputs.

If L1 andL2 are nontrivial languages (not equal to∅ or {0, 1}∗), L1 is Turing-recognizable, and
L2 is decidable, then it must be the case thatL1 ∪ L2 ≤m L1.

If Li is Turing-recognizable for everyi ≥ 1, then
⋃

∞

i=1
Li is Turing-recognizable.

Problem 6: The following construction uses the Recursion Theorem andan assumed decider Turing ma-
chineD for some language (set)L of Turing machines, to construct a new Turing machineR:

R: “On inputx:
Obtain〈R〉.
RunD on input〈R〉.
If D accepts then reject; otherwise accept.”

This construction yields immediate undecidability results for several different languagesL of Turing ma-
chines. Which of the following are examples of such languages?

L = {〈M〉 : Maccepts all input strings}

L = {〈M〉 : M accepts some input string}

L = {〈M〉 : M accepts the string00}

L = {〈M〉 : M does not accept the string11}

L = {〈M〉 : M accepts the string00 and does not accept the string11}
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Problem 7: Which of the following are known to be true?

3SAT ≤p 2SAT

2SAT ≤p 3SAT

PCP ≤p UNDIRECTED-HAMILTONIAN-CIRCUIT

VERTEX-COVER ≤p UNDIRECTED-HAMILTONIAN-CIRCUIT

TQBF ≤p PATH ∪ DIRECTED-HAMILTONIAN-CIRCUIT

Problem 8: Which of the following are true statements about space-bounded complexity?

It is known thatTOTNFA, the totality problem for nondeterministic finite automata, is in
PSPACE.

Savitch’s theorem implies that NSPACE(
√

log n) ⊆ SPACE(log n).

TQBF is NL-complete.

It is known that PATH is in L.

CLIQUE ≤L V ERTEX − COV ER

Problem 9: Which of the following are true statements about the proof that NL = coNL that was presented
in class (and appears in Section 8.6 of Sipser’s book)?

On every branch of the nondeterministic algorithm, every variable ci gets set to the correct
number of vertices reachable froms in G in i steps by paths of length at mosti.

On some branch of the algorithm, everyci gets set to the correct number of vertices reachable
from s in G in i steps by paths of length at mosti.

When the algorithm reaches its second phase (starting with line 12 in the code on p. 328), the
value ofcm is guaranteed to be equal to the total number of vertices thatare reachable froms in
G, by paths of any length.

If we omit line 14, which allows the algorithm to choose nondeterministically to skip some steps,
then the algorithm still works correctly but may take longerto complete.

This construction can be easily modified to prove thatNP = coNP .
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Problem 10: Which of the following are known to be true statements aboutprimality testing?

PRIMES ∈ BPP

COMPOSITES ∈ RP

PRIMES ∈ P

Fermat’s Little Theorem implies that every composite number c fails the Fermat test. That is,
does not satisfy the equationac−1 ≡ 1 (mod c) for somea ∈ {1, . . . , c − 1}.

Every non-Carmichael composite number fails the Fermat test for at least half of the possible
choices of the basea.
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Part II

Problem 1: (Fallacies Abound)

(a) Pumping lemma (10 points) Here is a “proof”, using the pumping lemma, that the languageL of
all strings of0s and1s of length100 is not regular. Since the result being “proved” is false (allfinite
languages are regular), the proof cannot be correct. What isthe flaw in the proof?

“Assume for the sake of contradiction thatL is regular. By the pumping lemma, if we choose an
element ofL, sayw = 0100, there are stringsx, y, andz, with |y| > 0, so that every string of the
form xykz (wherek ≥ 0) is in L. Since there are infinitely many different strings of this form, this
contradicts the fact thatL is finite. Therefore,L is not regular.”
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(b) NP-Completeness of 6=-SAT (10 points)
Let φ be a cnf-formula. A6=-assignment to the variables ofφ is one where each clause contains two
literals with unequal truth values. In other words a6=-assigment satisfiesφ without assigning all the
literals in any clause to true. In other words,6=-SAT =

{φ | φ is a cnf-formula and there is a6=-assignment that satisfiesφ}.

For instance,φ = (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3) has a satisfying6=-assignment given
by x1 = true, x2 = false, andx3 = false.

Sally, a 6.045 student, knows that6=-SAT is NP -complete. To convince Harry, a 6.046-expert, that
this is indeed true, she gives the following reduction fromCNF-SAT to 6=-SAT.

“Given a formulaφ with k clausesC1, C2, . . . , Ck, compute the formulaf(φ) as follows: Introduce
a new variablex and let the clauseC′

i = Ci ∧ x. The formulaf(φ) is an AND of the clauses
C′

1, C
′

2, . . . , C
′

k. That is, the reduction adds thesame dummy variablex to every clause.”

Sally claims that this is a valid reduction from CNF-SAT to6=-SAT, and it serves to prove that6=-SAT
is NP -hard. Harry thinks Sally is lying, since he observes that the formulaf(φ) is trivially satisfied
by the assignmentx = true. Whose side would you take in this argument, and why ?
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Problem 2: 42-Minimal machines (15 points) Let’s define an (ordinary, one-tape) Turing machineM to
be42-minimal if there is no (ordinary, one-tape) Turing machineM ′ that recognizes the same language as
M and has a representation smaller than1

42
times the size of the representation ofM .

(a) Is it decidable whether or not a given representation〈M〉 of a Turing machine is42-minimal ?

(b) If your answer to (a) above is yes, then describe an algorithm to decide42-minimality; if it is no, prove
that no such algorithm exists.
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Problem 3: Vacation packing (25 points) Harry, an MIT senior, is packing his backpack for his summer
trip to the Amazon Jungle. He discovers that he can carry only42 pounds. He would like to take many items,
including bug spray, hairspray, his iPod, underwear, a dictionary of languages spoken by native tribes, his
teddy bear, etc. They total much more than 42 pounds. Harry ishaving trouble figuring out which ones to
take.

Since he has taken 6.046 but not 6.045, Harry decides to develop a general algorithm to solve the problem.
He formulates the problem, in terms of a setI of items, each with a “weight”w(i) and a “value”v(i). His
problem is, given a setI of items with weights and values, and a maximum weightM , to determine the
maximum total value that can be achieved with items whose total weight is at mostM .

(a) Define Harry’soptimization problem formally.

(b) Define formally alanguage problem BACKPACK, which expresses the question of whether a given
value can be achieved within a given weight.
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(c) Prove that the resulting problem is NP-complete (thereby demolishing Harry’s hopes of obtaining an
easy, general solution).
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(d) Explain how, if Harry could query an “oracle” for the BACKPACK language decision problem for free,
he could solve his optimization problem in polynomial time.
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Problem 4: Generalized Checkers (15 points) DefineGeneralized-Checkers to be the set of winning
positions for the first player in a checker game played on a square checkerboard of any sizen × n, wheren
is an even number.

More precisely, we define aposition of ann×n checkerboard to be any placement of at most(n
2
−1)n

2
red

checkers and at most(n
2
− 1)n

2
black checkers on the red squares of the checkerboard, with no two checkers

occupying the same square. Also, any number of the checkers may be designated as “kings”.
We assume that the first player owns the black checkers and that his/her home side of the board is the top

of the board. The rules are the usual ones for checkers.1 We defineGeneralized-Checkers as the language

{〈n, P 〉 : P is a position of ann × n checkerboard in which the first player has a winning strategy}.

(a) Describe a polynomial-space algorithm to decide the languageGeneralized-Checkers.

1Review: In one turn a player may move a single checker one square diagonally to an unoccupied square, or may cause a single
checker to make a series of one or more jumps over the opponent’s checkers, to unoccupied squares on the other side. Checkers that are
jumped over are removed. Non-king checkers may only move or jump in diagonal directions from the player’s home side of theboard
to the other side, but kings can move or jump in any diagonal direction. A non-king gets promoted to a king if it reaches the opponent’s
first row. A player wins when he/she removes all the opponent’s checkers.
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(b) Show that your algorithm indeed uses polynomial space bygiving an upper bound on the space used
by your algorithm.
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Problem 5: Acceptance problem for NFAs (15 points) Let the languageANFA be the acceptance problem
for NFAs, that is,ANFA = {〈M, w〉 | M is an NFA andw is a word accepted byM }.

(a) Show thatANFA is in the class NL, by describing an algorithm. Be sure to explain why your algorithm
in fact works in nondeterministic log space.
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(b) Prove thatANFA is NL-hard, using a reduction from another problem we already know is NL-hard.
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Problem 6: Randomized complexity classes (10 points) Suppose thatL is a language over{0, 1}.
Suppose thatM is a probabilistic Turing machine that, on everyw ∈ {0, 1}∗, on every computation branch,
outputs one of{accept, reject, don’t-know}. Suppose that, for every wordw ∈ {0, 1}∗:

(i) If w ∈ L then: the probability thatM outputs “accept” is at least1
4
, the probability thatM outputs

“reject” is 0, and the probability thatM outputs “unknown” is at most3
4
.

(ii) If w /∈ L then: the probability thatM outputs “reject” is at least1
4
, the probability thatM outputs

“accept” is at most1
4
, and the probability thatM outputs “unknown” is at most1

2
.

Assume that there exists such a Turing MachineM that decidesL.

(a) Give an algorithm to decide membership inL that demonstrates thatL ∈ BPP . (Use the definition of
BPP from Sipser, p. 369, which says that the error probability is at most1

3
, for every input.)

(b) Prove that your algorithm shows thatL ∈ BPP .
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(c) Does your algorithm also demonstrate thatL is in RP? Why or why not?

(d) Does your algorithm also demonstrate thatL is in coRP ? Why or why not?
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END OF EXAM.
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