Quiz 2 Practice Problems

1 Sorting

1. Fill in either True or False for whether each sorting algorithm is in-place and stable. Also fill in the running time in terms of the number of elements n and the range of the elements k.

	in-place	stable	running time
Insetion Sort			
Counting Sort			
Selection Sort			
Heap Sort			
Merge Sort			
Radix Sort			

2. Given a list of n positive integers all less with $k=n^{2}$, would you rather use Counting Sort or Selection Sort? Why?

2 Heaps

1. Show that, with the array representation for storing an n-element heap, the leaves are the nodes indexed by $\left\lfloor\frac{n}{2}\right\rfloor+1, \ldots, n$
2. Is the sequence $<21,15,18,8,12,11,16,4,9>$ a max-heap? Justify.

3 DFS

Prove or disprove: Given two vertices u and v with discovery times $d[u]>d[v], u$ must be a descendant of v in G.

4 Shortest Paths

You have an undirected weighted graph G, a source s, shortest path estimates $d[u]=50$ and $d[v]=40$, and an edge with weight $w(u, v)=5$.

1. What happens when you call Relax (u,v)?
2. What happens when you call Relax (v, u) ?
3. If you are told that the shortest path weight $\delta(s, u)=45$, what can you say about the shortest path weight $\delta(v, u)$? Why?
