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Problem Set 1
This problem set is due September 25 at 11:59PM.
Solutions should be turned in through the course website in PS or PDF form using LaTeX. The
course website has links to a number of editors that are useful for writing in LaTeX.
It is recommended that you download the LaTeX source for this problem set which includes place-
holders for solutions.

1. Asymptotic Notation Collaborators: LIST COLLABORATORS HERE

Decide whether these statements are True or False. You must briefly justify all your answers
to receive full credit.

(a) f(n) = Ω(g(n)) =⇒ g(n) = O(f(n))

Solution: INSERT ANSWER HERE

(b) f(n) = O(g(n)) ∧ f(n) = Ω(h(n)) =⇒ g(n) = Θ(h(n))

Solution: INSERT ANSWER HERE

(c) f(n) = O(g(n)) ∧ g(n) = Ω(f(n)) =⇒ f(n) = Θ(g(n))

Solution: INSERT ANSWER HERE

2. Binary Search Collaborators: LIST COLLABORATORS HERE

In Problem Solving With Algorithms And Data Structures Using Python by Miller and Ranum,
two examples are given of a binary search algorithm. Both functions take a sorted list of
numbers, alist, and a query, item, and return true if and only if item ∈ alist. The
first version is iterative (using a loop within a single function call) and the second is recursive
(calling itself with different arguments). Both versions can be found on the last page of this
problem set.

Let n = len(alist).

(a) What is the runtime of the iterative version in terms of n, and why?

Solution: INSERT ANSWER HERE

(b) What is the runtime of the recursive version in terms of n, and why?

Solution: INSERT ANSWER HERE

(c) Explain how you might fix the recursive version so that it has the same asymptotic
running time as the iterative version (but is still recursive).

Solution: INSERT ANSWER HERE



2 Handout 4: Problem Set 1

3. Set Intersection Collaborators: LIST COLLABORATORS HERE

Python has a built in set data structure. A set is a collection of elements without repetition.

In an interactive Python session, type the following to create an empty set:

s = set()

To find out what operations are available on sets, type:

dir(s)

Some fundamental operations include add, remove, and contains and len .
Note that contains and len are more commonly called with the syntax element in set
and len(set). All four of these operations run in constant time.

For this problem, we will be analyzing the runtime of intersection, intersection update,
union, and update, on two sets, s and t.

(a) What do each of those four operations do? Use the Python help command. Refer to
http://docs.python.org/ as necessary.

Solution:
intersection INSERT ANSWER HERE

intersection update INSERT ANSWER HERE
union INSERT ANSWER HERE
update INSERT ANSWER HERE

(b) Using Θ notation, how long do you conjecture each of the four operations will take in
terms of |s|, |t|, |s ∪ t|, and |s ∩ t|? Give reasons.

Solution:
intersection INSERT ANSWER HERE

intersection update INSERT ANSWER HERE
union INSERT ANSWER HERE
update INSERT ANSWER HERE

(c) Now try these operations out using a variety of values for |s|, |t|, |s ∪ t|, and |s ∩ t|.
You may wish to use the Python modules profile or the more lightweight timeit.
A good description of how to use timeit is available at
http://www.diveintopython.org/performance tuning/timeit.html
Describe your methods and results. Try to give a simple but reasonably accurate for-
mula that fits your experimental results. Discuss any discrepancies between your con-
jectures in part (b) and your experimental results.

Solution: INSERT ANSWER HERE
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Iterative Version:

def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False

while first<=last and not found:
midpoint = (first + last)/2
if alist[midpoint] == item:

found = True
else:

if item < alist[midpoint]:
last = midpoint-1

else:
first = midpoint+1

return found

Recursive Version:

def binarySearch(alist, item):
if len(alist) == 0:

return False
else:

midpoint = len(alist)/2
if alist[midpoint]==item:

return True
else:

if item<alist[midpoint]:
return binarySearch(alist[:midpoint],item)

else:
return binarySearch(alist[midpoint+1:],item)


