Dual Problems in Property Testing Roei Tell, Weizmann Institute of Science ITCS, January 2016

Distinguish between objects that:

- > Have the property
- > Far from having the property

A Broad Question

What happens when the property that we want to test is **"being far from a set"?**

Example:

- Test the property of graphs that are far from being connected

A Broad Question

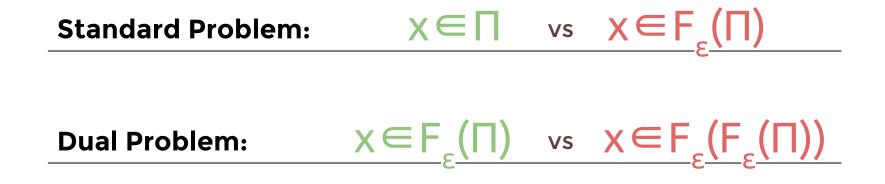
Distinguish between objects that are:

- > Far from the set
- > Far from any object that is far from the set

Distinguish between:

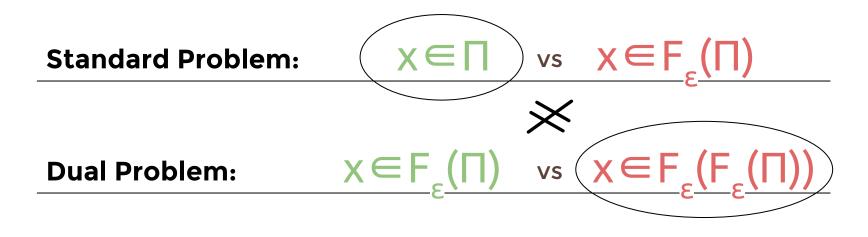
- Graph is far from connected
- Graph is far from any graph that is far from connected

Dual Problems



> $F_{r}(\Pi)$ = { objects that are ε -far from Π }

Dual Problems



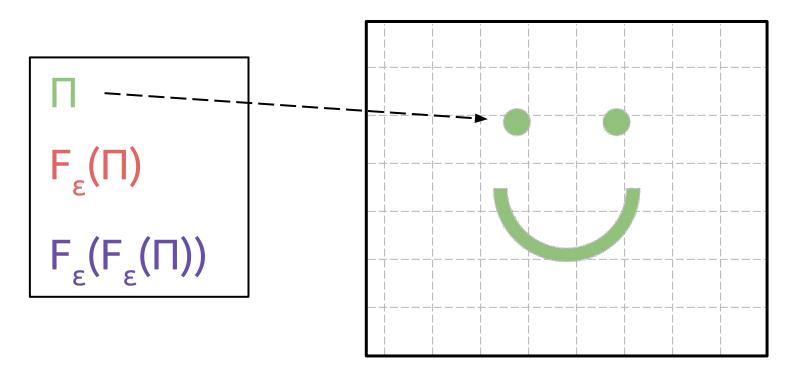
> $F_{r}(\Pi)$ = { objects that are ε -far from Π }

Dual Problems: Overview

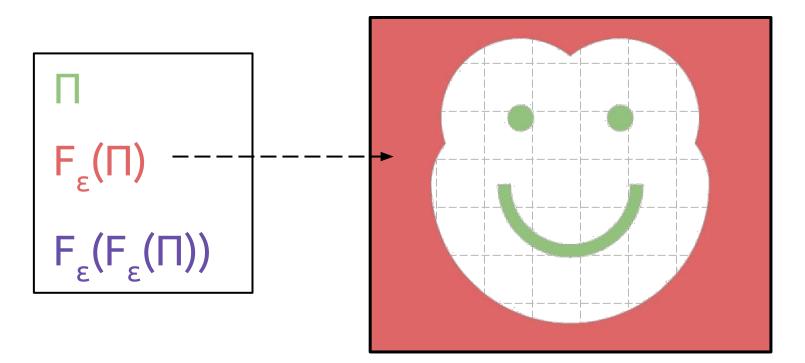
- > Question has not been asked so far
- > Current work first exploration:
 - Non-triviality, different from original problems
 - Testers for several prominent dual problems
 - Identify specific setting of interest graphs

Non-Triviality of Dual Problems

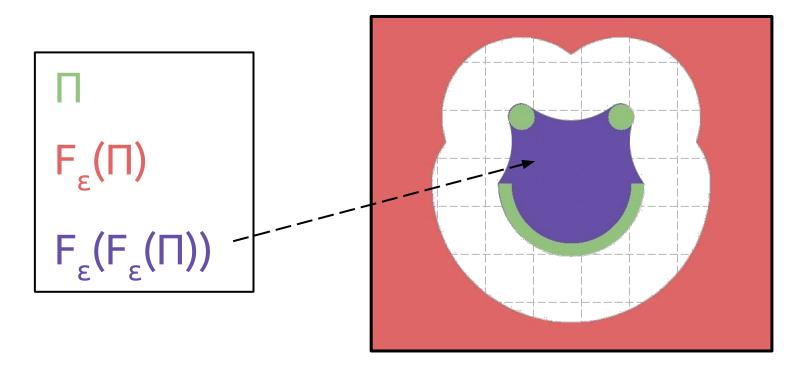
Non-Triviality: Example



Non-Triviality: Example



Non-Triviality: Example



Non-Triviality: Basic Facts

- 1. A random^{*} property Π satisfies $F_{\epsilon}(F_{\epsilon}(\Pi)) \neq \Pi$.
- 2. $\Pi \subseteq F_{\epsilon}(F_{\epsilon}(\Pi))$, but $F_{\epsilon}(F_{\epsilon}(\Pi))$ can be much larger than Π^{**}
- 3. $F_{\epsilon}(F_{\epsilon}(\Pi))$ can contain points that are almost ϵ -far from Π .

* In {0,1}ⁿ and in other classes of metric spaces.

** In $\{0,1\}^n$ the set $F_{\epsilon}(F_{\epsilon}(\Pi))$ can be exp(n) larger, even for a small ϵ .

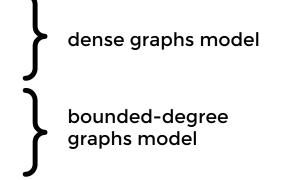
Non-Triviality: More Examples

$\Pi \neq F_{\varepsilon}(F_{\varepsilon}(\Pi)) \rightarrow \text{graph properties}$

- > *k*-colorable
- > graphs with large clique
- > graphs isomorphic to a given graph
- > connected
- > cycle-free
- > bipartite

>

...



Dual Problems: What we Know

Our Main Results

> The query complexity of dual testing problems

- General lower bounds
- Testers for specific problems

> The behavior of "far-from-far" sets

- "Far-from-far" closure operator
- Not presented in this talk

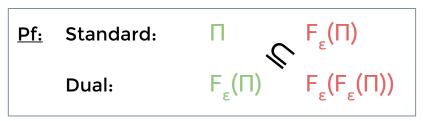
Our Main Results: General Lower Bounds

Thm 1: The query complexity of any dual problem is lower bounded by that of the original problem.

<u>Thm 2:</u> Testing any dual problem with one-sided error requires a linear number of queries (unless $F_{f}(\Pi)=\emptyset$).

Our Main Results: General Lower Bounds

Thm 1: The query complexity of any dual problem is lower bounded by that of the original problem.



<u>Thm 2:</u> Testing any dual problem with one-sided error requires a linear number of queries (unless $F_{f}(\Pi)=\emptyset$).

Our Main Results: Specific Upper Bounds

> Testers via equivalence to the original problem ($\Pi = F_{f}(F_{f}(\Pi))$)

Thm 3: The following dual problems are equivalent to the original problems:

- 1. Testing whether a string is far from a code.
- 2. Testing whether a function is far from monotone. *
- 3. Testing whether a distribution is far from uniform. ***

^{*} A code with constant relative distance.

^{**} Functions $D \rightarrow R$ such that the width of D is bounded (includes functions {0,1}ⁿ \rightarrow {0,1}).

^{***} Generalizes to testing whether a distribution is far from D, if D is from a large class.

Our Main Results: Specific Upper Bounds

> Testers via reductions to tolerant testing

Thm 4: For every ε , it is possible to test whether a graph is:

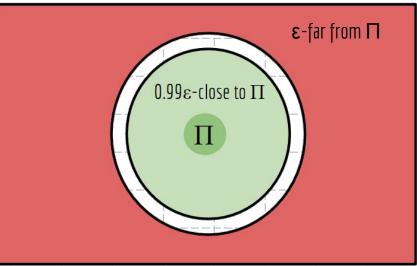
- 1. Far from k-colorable, with Tower($1/\epsilon$) queries.^{*}
- 2. Far from being connected, with poly($1/\epsilon$) queries. **
- 3. Far from being cycle-free, with poly($1/\epsilon$) queries. **

^{*} Dense graphs model.

^{**} Bounded-degree graphs model.

Reductions to Tolerant Testing

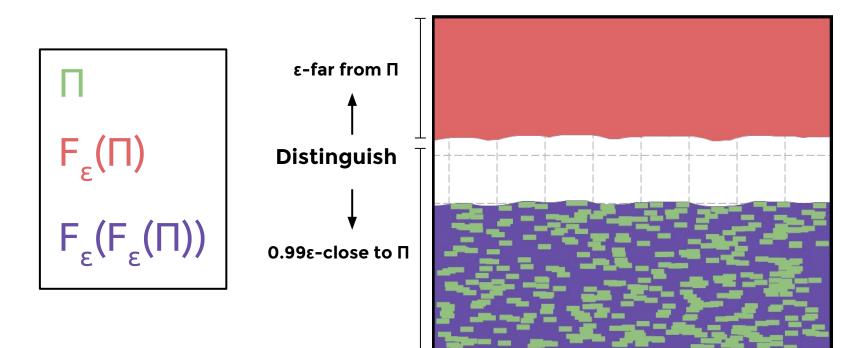
- <u>Tolerant testing [PRR]</u>: Distinguish between objects that are
 - \circ 0.99 ϵ -close to Π
 - \circ ε-far from Π



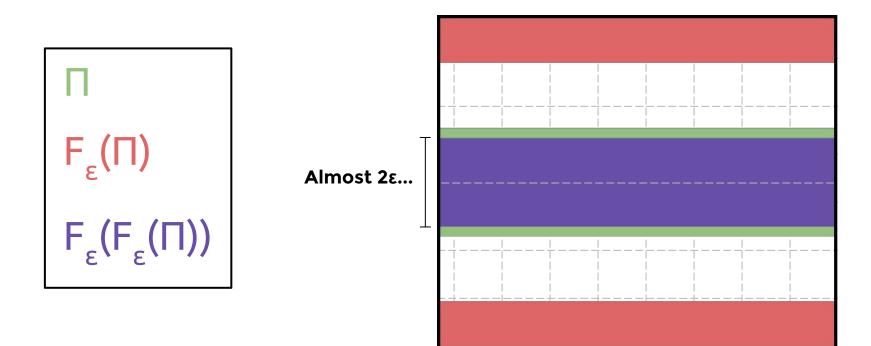
Reductions to Tolerant Testing

- <u>Tolerant testing [PRR]</u>: Distinguish between objects that are
 - 0.99ε-close to Π
 - ε-far from Π
- > Dual reduces to tolerant testing if all points in $F_{\epsilon}(F_{\epsilon}(\Pi))$ are 0.99 ϵ -close to Π

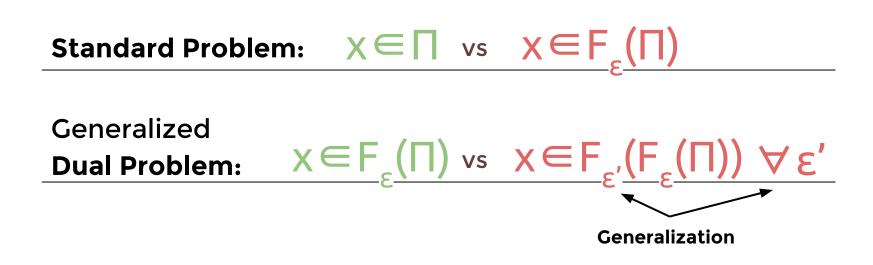
Sometimes $F_{r}(F_{r}(\Pi))$ is 0.99 ϵ -close to Π ...



... but $F_{\epsilon}(F_{\epsilon}(\Pi))$ not always 0.99 ϵ -close to Π



Generalized Version: ε'-far from ε-far



> $F_{\ell}(\Pi)$ = { objects that are ϵ -far from Π }

Dual Problems: Digest and Current Frontiers

Dual Problems: Key Takeaways

> Class of natural and unexplored problems

• Current work: General lower bounds, six specific testers

> **Different** from original problems

• And don't reduce (in general) to tolerant testing

> Not expecting one global answer

• Different settings, different behaviors (graphs vs codes)

Dual Problems: Two Frontiers

- 1. Can a dual problem be more difficult to test than the original problem?
 - Current work: Gap in upper bounds, but no separation

2. Dual problems of graph partition problems

 Does testing whether a graph is far from having a large clique^{*} reduce to tolerant testing?

* Where "large clique" means clique of density $\rho|V|$, for a constant predetermined ρ >0.

Thank you!

A far-from-far visual game is available at http://sites.google.com/site/roeitell