Energy-Efficient Algorithms

Erik Demaine, Jayson Lynch, Geronimo Mirano, Nirvan Tyagi MIT CSAIL

Why energy-efficient? Cheaper, Greener, Faster, Longer

- Cheaper and Greener
- Longer battery life
- Faster processors

Computation represents 5% of worldwide energy use, growing 4-10% annually compared with 3% growth in total energy use [Heddeghem 2014]

Why energy-efficient? Cheaper, Greener, Faster, Longer

- Cheaper and Greener
- Longer battery life
- Faster processors

Computation represents 5% of worldwide energy use, growing 4-10% annually compared with 3% growth in total energy use [Heddeghem 2014]

Why energy-efficient? Cheaper, Greener, Faster, Longer

- Cheaper and Greener
- Longer battery life
- Faster processors

Computation represents 5% of worldwide energy use, growing 4-10% annually compared with 3% growth in total energy use [Heddeghem 2014]

Koomey's Law

- Energy efficiency of computation increases exponentially
- Computations per kWh doubles every 1.57 years.

[Koomey, Berard, Sanchez, Wong '09]

Landauer's Principle

[Landauer '61]

- Erasing bits has a minimum energy cost
- 1 bit = $k T \ln 2$ Joules
 - k is Boltzman's constant
 - T is the temperature
- 1 bit = 7.6*10^-28 kWh at room temperature
- Experimental support [BAPCDL '12]

Landauer's Limit

- Koomey's Law: energy efficiency of computation doubles every 1.57 years
- Landauer's Principle:
 - \sim 1 bit = 7.6*10^-28 kWh
- ➤ Five orders of magnitude away [Center for Energy Efficient Electronic Science]
- At this rate we will hit a 'ceiling' in a few decades.

Reversible Computing

- Circumvents Landauer's Limit no information destroyed
- Requires that all gates/functions are bijective
- Reversible computing is still universal (given extra 'garbage' space)
 [Lecerf '63, Bennett '73, FT '82]
 - Only a constant number of ancilla bits needed for circuits [AGS '15]

Fredkin Gate Toffoli Gate

Building Reversible Computers

- Split Level Charge Recovery Logic
- Resonant Circuits
- Nanomagnetic Circuits
- Superconducting Circuits

Cyclos Semiconductor '12

MIT '99

Reversible Computing

- Circumvents Landauer's Limit no information destroyed
- Requires that all gates/functions are bijective
- Reversible computing is still universal [Lecerf '63, Bennett '73, FT '82]
 - Only a constant number of ancilla bits needed for circuits [AGS '15]
- Existing general results for simulating all algorithms reversibly require significantly more computational resources
 - Quadratic space [Bennett '79] or
 - Exponential time [Bennett '89] or
 - Trade-off between those extremes [Williams '00][BTV '01]

Landauer Energy Cost

[this paper]

- Establish RAM model of computation
- Charge one unit of energy whenever a bit is destroyed.
 - Li and Vitany also pose information-energy model [LV '92]
- Some operations are cheap (reversible), others are expensive
 - \circ Cost of a function is: $lg \frac{|input space|}{|output space|}$
- Examples:

$$x += y$$
 $x >> 1$ $x = 0$

Energy Cost: 0 Energy Cost: 1 Energy Cost: w

Semi-Reversible Computing [this paper]

Analyze the energy complexity *E*(*n*) of algorithms
0 ≤ *E*(*n*) ≤ *wT*(*n*)

- Create new (semi-)reversible algorithms to minimize the energy cost without large time/space overhead
- Understand time/space/energy tradeoff

Algorithms [this paper]

Algorithm	Time	Space (words)	Energy (bits)
Sorting Algorithms			
Comparison Sort	$\Theta(n \lg n)$	$\Theta(n)$	$\Theta(n \lg n)$
Reversible Comparison Sort	$\Theta(n \lg n)$	$\Theta(n)$	0
Reversible Insertion Sort	$\Theta(n^2)$	$\Theta(n)$	0
Counting Sort	$\Theta(n+k)$	$\Theta(n+k)$	$\Theta(n+k)$
Reversible Counting Sort	$\Theta(n+k)$	$\Theta(n+k)$	0
Graph Algorithms			
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV + E)$
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(V^3w)$
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$
Reversible Matrix APSP [Fra99]	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$wV^2 \lg V$

Data Structures

[this paper]

Algorithm	Time	Space (words)	Energy (bits)
Data Structures			
Standard AVL Trees (build)	$O(n \lg n)$	O(n)	$O(w \cdot n \lg n)$
(search)	$O(\lg n)$	O(1)	$O(\lg n)$
(insert)	$O(\lg n)$	O(1)	$O(w \lg n)$
(k deletes)	$O(k \lg n)$	O(1)	$O(w \lg n)$
Reversible AVL Trees (build)	$O(n \lg n)$	O(n)	0
(search)	$O(\lg n)$	O(1)	0
(insert)	$O(\lg n)$	O(1)	0
(k deletes)	$O(k \lg n)$	O(k)	0
Standard Binary Heap (insert)	$O(\lg n)$	O(1)	$O(\lg n)$
(delete max)	$O(\lg n)$	$O(\lg n)$	$O(w \lg n)$
Reversible Binary Heap (insert)	$O(\lg n)$	O(1)	0
(delete max)	$O(\lg n)$	$O(\lg n)$	0
Dynamic Array (build)	O(n)	O(n)	0
(query)	O(1)	O(1)	0
(add)	O(1)	O(1)	0
(delete)	O(1)	O(1)	0

[this paper]

- Languages and compiler for semi-reversible computing [DLT '16]
- Costs and energy efficient versions for many computer primitives
- Protected vs. General

Primitive	Time	Space in Log	Energy
	(ops)	(bits)	(bits)
Control Logic			
Paired Jump	$\Theta(1)$	1	0
Variable Jump	$\Theta(1)$	1+w	0
Protected If	$\Theta(1)$	0	0
General If	$\Theta(1)$	1	0
Simple For loop	$\Theta(l)$	0	0
Protected For loop	$\Theta(l)$	0	0
General For loop	$\Theta(l)$	$\lg l$	0
Function call	$\Theta(1)$	0	0
Memory Manager	\mathbf{nent}		
Free lists	$\Theta(N)$	$\Theta(wN)$	0
Reference Counting	$\Theta(N)$	$\Theta(wN)$	0
Mark & Sweep	$\Theta(N)$	$\Theta(wN)$	0

General if example:

[this paper]

- Languages and compiler for semi-reversible computing [DLT '16]
- Costs and energy efficient versions for many computer primitives
- Protected vs. General

Primitive	Time	Space in Log	Energy
	(ops)	(bits)	(bits)
Control Logic			
Paired Jump	$\Theta(1)$	1	0
Variable Jump	$\Theta(1)$	1+w	0
Protected If	$\Theta(1)$	0	0
General If	$\Theta(1)$	1	0
Simple For loop	$\Theta(l)$	0	0
Protected For loop	$\Theta(l)$	0	0
General For loop	$\Theta(l)$	$\lg l$	0
Function call	$\Theta(1)$	0	0
Memory Manager	\mathbf{nent}		
Free lists	$\Theta(N)$	$\Theta(wN)$	0
Reference Counting	$\Theta(N)$	$\Theta(wN)$	0
Mark & Sweep	$\Theta(N)$	$\Theta(wN)$	0

Protected if:

```
if (condition) {
    ... condition not
        modified ...
} else {
    ... condition not
        modified ...
}
```

[this paper]

- Languages and compiler for semi-reversible computing [DLT '16]
- Costs and energy efficient versions for many computer primitives
- Protected vs. General

Primitive	Time	Space in Log	Energy
	(ops)	(bits)	(bits)
Control Logic			
Paired Jump	$\Theta(1)$	1	0
Variable Jump	$\Theta(1)$	1+w	0
Protected If	$\Theta(1)$	0	0
General If	$\Theta(1)$	1	0
Simple For loop	$\Theta(l)$	0	0
Protected For loop	$\Theta(l)$	0	0
General For loop	$\Theta(l)$	$\lg l$	0
Function call	$\Theta(1)$	0	0
Memory Manager	\mathbf{nent}		
Free lists	$\Theta(N)$	$\Theta(wN)$	0
Reference Counting	$\Theta(N)$	$\Theta(wN)$	0
Mark & Sweep	$\Theta(N)$	$\Theta(wN)$	0

Protected if example:

[this paper]

- Languages and compiler for semi-reversible computing [DLT '16]
- Costs and energy efficient versions for many computer primitives
- Protected vs. General

Primitive	Time	Space in Log	Energy
	(ops)	(bits)	(bits)
Control Logic			
Paired Jump	$\Theta(1)$	1	0
Variable Jump	$\Theta(1)$	1+w	0
Protected If	$\Theta(1)$	0	0
General If	$\Theta(1)$	1	0
Simple For loop	$\Theta(l)$	0	0
Protected For loop	$\Theta(l)$	0	0
General For loop	$\Theta(l)$	$\lg l$	0
Function call	$\Theta(1)$	0	0
Memory Manager	nent		
Free lists	$\Theta(N)$	$\Theta(wN)$	0
Reference Counting	$\Theta(N)$	$\Theta(wN)$	0
Mark & Sweep	$\Theta(N)$	$\Theta(wN)$	0

Protected for:

```
for (init; cond;
reversible update) {
    ... cond not
        affected ...
}
```

Pointer Swapping

Irreversible:

No Energy Cost

- Logging
 - energy cost → space cost
- Copy-out trick, unrolling and reversesubroutines

Pointer Swapping

Reversible, Doubly-linked:

```
q += p // q was 0
p -= q
p += q.next // p was 0
q -= p.prev
```


- Logging
 - energy cost → space cost
- Copy-out trick, unrolling and reversesubroutines

Pointer Swapping

Reversible, Doubly-linked:

```
q += p // q was 0
p -= q
p += q.next // p was 0
q -= p.prev
```


- Logging
 - o energy cost → space cost
- Copy-out trick, unrolling and reversesubroutines

Pointer Swapping

Reversible, Doubly-linked:

```
q += p // q was 0
p -= q
p += q.next // p was 0
q -= p.prev
```


- Logging
 - o energy cost → space cost
- Copy-out trick, unrolling and reversesubroutines

Sorting Algorithms [this paper]

${f Algorithm}$	Time	Space (words)	Energy (bits)
Sorting Algorithms			
Comparison Sort	$\Theta(n \lg n)$	$\Theta(n)$	$\Theta(n \lg n)$
Reversible Comparison Sort	$\Theta(n \lg n)$	$\Theta(n)$	0
Reversible Insertion Sort	$\Theta(n^2)$	$\Theta(n)$	0
Counting Sort	$\Theta(n+k)$	$\Theta(n+k)$	$\Theta(n+k)$
Reversible Counting Sort	$\Theta(n+k)$	$\Theta(n+k)$	0

Reversible Merge Sort

[this paper]

- Preserve a copy of the input; if not preserving input, would necessarily pay Ω
 (n lg n) energy.
- Attains theoretical irreversible lower bound, O(n lg n) time + O(n) space

Reversible Merge Sort

[this paper]

- Preserve a copy of the input; if not preserving input, would necessarily pay Ω
 (n lg n) energy.
- Attains theoretical irreversible lower bound, O(n lg n) time + O(n) space

Data Structure Techniques for Semi-Reversibility

- In general, data structures will accumulate logging space with every operation
- Partially solved by periodic rebuilding

Data Structures!

[this paper]

${f Algorithm}$	Time	Space (words)	Energy (bits)
Data Structures			
Standard AVL Trees (build)	$O(n \lg n)$	O(n)	$O(w \cdot n \lg n)$
(search)	$O(\lg n)$	O(1)	$O(\lg n)$
(insert)	$O(\lg n)$	O(1)	$O(w \lg n)$
(k deletes)	$O(k \lg n)$	O(1)	$O(w \lg n)$
Reversible AVL Trees (build)	$O(n \lg n)$	O(n)	U
(search)	$O(\lg n)$	O(1)	0
(insert)	$O(\lg n)$	O(1)	0
(k deletes)	$O(k \lg n)$	O(k)	0
Standard Binary Heap (insert)	$O(\lg n)$	O(1)	$O(\lg n)$
(delete max)	$O(\lg n)$	$O(\lg n)$	$O(w \lg n)$
Reversible Binary Heap (insert)	$O(\lg n)$	O(1)	0
(delete max)	$O(\lg n)$	$O(\lg n)$	0
Dynamic Array (build)	O(n)	O(n)	U
(query)	O(1)	O(1)	0
(add)	O(1)	O(1)	0
(delete)	O(1)	O(1)	O.

Graph Algorithms

Algorithm	Time	Space (words)	Energy (bits)
Graph Algorithms			
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV + E)$
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(wV^3)$
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$
Reversible Matrix APSP [Fra99]	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^2 \lg V)$

Floyd-Warshall Algorithm

 Potentially deletes path lengths in adjacency matrix many times

```
FloydWarshall():

for k = 1 to n:

    for i = 1 to n:

        for j = 1 to n:

            path[i][j] = ...

            min(path[i][j]; path[i][k] + path[k][j])
```

Algorithm	Time	Space (words)	Energy (bits)
Graph Algorithms			
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV + E)$
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(wV^3)$
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$
Reversible Matrix APSP [Fra99]	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^2 \lg V)$

- Reversible Floyd-Warshall [Frank '99]
 - Must recover the state of all the erased distances.
 - Can be seen immediately from full logging technique.

```
FloydWarshall():

for k = 1 to n:

    for i = 1 to n:

        for j = 1 to n :

            path[i][j] = ...

            min(path[i][j]; path[i][k] + path[k][j])
```

Algorithm	Time	Space (words)	Energy (bits)
Graph Algorithms			
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV + E)$
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(wV^3)$
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$
Reversible Matrix APSP [Fra99]	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^2 \lg V)$

- (min, +) Matrix Multiplication
 - Still deleting many entries in the adjacency matrix
 - Algorithm runs O(lg V) matrix multiplications

```
APSPMM(W):
//Given adjacency matrix W
W<sup>(1)</sup> = W
while m < n-1:
W<sup>(2m)</sup> = W<sup>(m)</sup> ⊕ W<sup>(m)</sup>
m = 2m
return W<sup>(m)c</sup>
```

Algorithm	${f Time}$	Space (words)	Energy (bits)
Graph Algorithms			
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV + E)$
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(wV^3)$
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$
Reversible Matrix APSP [Fra99]	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^2 \lg V)$

- Reversible (min, +) Matrix
 Multiplication [Leighton]
 - Save space by only storing each intermediate matrix.
 - Each new matrix can be recomputed from the prior two.

```
APSPMM(W):

//Given adjacency matrix W

W^{(1)} = W

while m < n-1:

W^{(2m)} = W^{(m)} \oplus W^{(m)}

m = 2m

return W^{(m)c}
```

Algorithm	Time	Space (words)	Energy (bits)
Graph Algorithms			
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV+E)$
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(wV^3)$
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$
Reversible Matrix APSP [Fra99]	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^2 \lg V)$

[this paper]

- Reduced Energy (min, +)
 Matrix Multiplication
 - Each matrix element can be calculated reversibly. We now only erase O(V²) bits per matrix multiplication.

```
APSPMM(W):

//Given adjacency matrix W
W<sup>(1)</sup> = W
while m < n-1:

W<sup>(2m)</sup> = W<sup>(m)</sup> ⊕ W<sup>(m)</sup>

m = 2m
return W<sup>(m)c</sup>
```

Algorithm	${f Time}$	Space (words)	Energy (bits)
Graph Algorithms			
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV + E)$
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(wV^3)$
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$
Reversible Matrix APSP Fra99	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^2 \lg V)$

 Non-trivial tradeoff between time, space, and energy in the APSP algorithms.

Algorithm	${f Time}$	Space (words)	Energy (bits)
Graph Algorithms			
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV + E)$
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(wV^3)$
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$
Reversible Matrix APSP [Fra99]	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^2 \lg V)$

Open Problems - New Way of Analyzing Algorithms

Any algorithms you want!

- Shortest Path and APSP
- Machine Learning Algorithms
- Dynamic Programming
- Linear Programming
- vEB Trees
- Fibonacci Heaps
- FFT
- String Search
- Geometric Algorithms
- Cryptography

Open Problems - Model Extensions

- Streaming and Sub-Linear Algorithms
 - typically, space-heavy algorithms are easiest to make reversible; thus, these present a challenge.
- Succinct Data Structures
- Randomized algorithms
 - Motivation for minimizing randomness needed.
- Modeling memory and cache
- New hardware
- Lower bounds on time/space/energy complexity

Acknowledgments

Erik Demaine
Jayson Lynch
Geronimo Mirano
Nirvan Tyagi

Martin Demaine Kevin Kelly Maria L. Messick Licheng Rao

