
Energy-Efficient Algorithms
Erik Demaine, Jayson Lynch,

Geronimo Mirano, Nirvan Tyagi
MIT CSAIL

Why energy-efficient? Cheaper, Greener, Faster, Longer

● Cheaper and Greener
● Longer battery life
● Faster processors

Computation represents 5% of worldwide
energy use, growing 4-10% annually
compared with 3% growth in total energy use
[Heddeghem 2014]

Why energy-efficient? Cheaper, Greener, Faster, Longer

● Cheaper and Greener
● Longer battery life
● Faster processors

Computation represents
5% of worldwide energy
use, growing 4-10%
annually compared with
3% growth in total energy
use [Heddeghem 2014]

Why energy-efficient? Cheaper, Greener, Faster, Longer

● Cheaper and Greener
● Longer battery life
● Faster processors

AMD FX-8370
clocked at 8.72GHz
by The Stilt using
liquid nitrogen
cooling.

Computation represents
5% of worldwide energy
use, growing 4-10%
annually compared with
3% growth in total energy
use [Heddeghem 2014]

Koomey’s Law

● Energy efficiency of computation
increases exponentially

● Computations per kWh doubles
every 1.57 years.

[Koomey, Berard, Sanchez, Wong ‘09]

Landauer’s Principle
[Landauer ‘61]

● Erasing bits has a minimum energy cost
● 1 bit = k T ln 2 Joules

○ k is Boltzman’s constant
○ T is the temperature

● 1 bit = 7.6*10^-28 kWh at room temperature
● Experimental support [BAPCDL ‘12]

0x
x
y x y

x = 0 x = y

Landauer’s Limit

● Koomey’s Law: energy
efficiency of computation
doubles every 1.57 years

● Landauer’s Principle:
○ 1 bit = 7.6*10^-28 kWh

● ≈ Five orders of magnitude
away [Center for Energy
Efficient Electronic Science]

● At this rate we will hit a
‘ceiling’ in a few decades.

1.E+17

1.E+18

1.E+19

1.E+20

1.E+21

1.E+22

[Koomey, Berard, Sanchez, Wong ‘09]

Landauer’s Limit

Reversible Computing

● Circumvents Landauer’s Limit - no information destroyed
● Requires that all gates/functions are bijective
● Reversible computing is still universal (given extra ‘garbage’ space)

[Lecerf ‘63, Bennett ‘73, FT ‘82]
○ Only a constant number of ancilla bits needed for circuits [AGS ‘15]

Fredkin Gate Toffoli Gate

Building Reversible
Computers
● Split Level Charge Recovery Logic
● Resonant Circuits
● Nanomagnetic Circuits
● Superconducting Circuits

Cyclos Semiconductor ‘12

MIT ‘99

Reversible Computing

● Circumvents Landauer’s Limit - no information destroyed
● Requires that all gates/functions are bijective
● Reversible computing is still universal [Lecerf ‘63, Bennett ‘73, FT ‘82]

○ Only a constant number of ancilla bits needed for circuits [AGS ‘15]

● Existing general results for simulating all algorithms reversibly require
significantly more computational resources
○ Quadratic space [Bennett ‘79] or
○ Exponential time [Bennett ‘89] or
○ Trade-off between those extremes [Williams ‘00][BTV ‘01]

● Establish RAM model of computation
● Charge one unit of energy whenever a bit is destroyed.

○ Li and Vitany also pose information-energy model [LV ‘92]

● Some operations are cheap (reversible), others are
expensive
○ Cost of a function is:

● Examples:

Landauer Energy Cost
[this paper]

x, y f(x, y)f

x += y
Energy Cost: 0

x >> 1
Energy Cost: 1

x = 0
Energy Cost: w

● Analyze the energy complexity E(n) of algorithms
○ 0 ≤ E(n) ≤ wT(n)

● Create new (semi-)reversible algorithms to minimize the
energy cost without large time/space overhead

● Understand time/space/energy tradeoff

Semi-Reversible Computing
[this paper]

Algorithms
[this paper]

Data Structures
[this paper]

Basic Building Blocks
[this paper]

● Languages and compiler for semi-reversible computing [DLT ‘16]
● Costs and energy efficient versions for many computer primitives
● Protected vs. General

General if example:

if (a > 2) {
 a -= 4;
}

Basic Building Blocks
[this paper]

● Languages and compiler for semi-reversible computing [DLT ‘16]
● Costs and energy efficient versions for many computer primitives
● Protected vs. General

Protected if:

if (condition) {
 … condition not
 modified …
} else {
 … condition not
 modified …
}

Basic Building Blocks
[this paper]

● Languages and compiler for semi-reversible computing [DLT ‘16]
● Costs and energy efficient versions for many computer primitives
● Protected vs. General

Protected if example:

if (a > 2) {
 b -= 4;
}

Basic Building Blocks
[this paper]

● Languages and compiler for semi-reversible computing [DLT ‘16]
● Costs and energy efficient versions for many computer primitives
● Protected vs. General

Protected for:

for (init; cond;
reversible update) {
 … cond not
 affected …
}

Algorithmic Techniques for Semi-Reversibility

● Pointer Swapping

● Logging

○ energy cost → space cost

● Copy-out trick, unrolling and reverse-
subroutines

Energy Cost w No Energy Cost

Irreversible:

p = p.next;

● Pointer Swapping

● Logging

○ energy cost → space cost

● Copy-out trick, unrolling and reverse-
subroutines

Reversible, Doubly-linked:

q += p // q was 0
p -= q
p += q.next // p was 0
q -= p.prev

Algorithmic Techniques for Semi-Reversibility

Energy Cost w No Energy Cost

Algorithmic Techniques for Semi-Reversibility

● Pointer Swapping

● Logging

○ energy cost → space cost

● Copy-out trick, unrolling and reverse-
subroutines

Energy Cost w No Energy Cost

Reversible, Doubly-linked:

q += p // q was 0
p -= q
p += q.next // p was 0
q -= p.prev

Algorithmic Techniques for Semi-Reversibility

● Pointer Swapping

● Logging

○ energy cost → space cost

● Copy-out trick, unrolling and reverse-
subroutines

Energy Cost w No Energy Cost

Reversible, Doubly-linked:

q += p // q was 0
p -= q
p += q.next // p was 0
q -= p.prev

Sorting Algorithms
[this paper]

● Preserve a copy of the input; if not preserving input, would necessarily pay Ω
(n lg n) energy.

● Attains theoretical irreversible lower bound, O(n lg n) time + O(n) space

Reversible Merge Sort
[this paper]

SORT(A, B)

MERGE(A1’, A2’)

SORT(A1,B)
= [a1, a2,
 … , aN]

= [0, 0, … ,
 0]

= [a1, a2,
 … , aN]

= [ak1, … ,
 akN]

SPLIT

SPLIT

SORT(A2,B)

JOIN

A

B

A

A’

● Preserve a copy of the input; if not preserving input, would necessarily pay Ω
(n lg n) energy.

● Attains theoretical irreversible lower bound, O(n lg n) time + O(n) space

Reversible Merge Sort
[this paper]

MERGE(A1’, A2’)

SORT(A1,B)

= [(a1,1),
 (a2,2),
 …
 (aN,N)]

= [(0,0),
 …
 (0,0)]

= [(ak1,k1),
 (ak2,k2),
 …
 (akN,kN)]

SPLIT

SPLIT

SORT(A2,B)

JOIN

= [(a1,1),
 (a2,2),
 …
 (aN,N)]

A

B

A

A’

SORT(A, B)

Data Structure Techniques for Semi-Reversibility

● In general, data structures will accumulate logging space
with every operation

● Partially solved by periodic rebuilding

+
1. Rots: 010

2. Rots: 001

3. Rots: 0101

4. Rots: 1001

5. Rots: 1100

Log:

Data Structures!
[this paper]

Graph Algorithms

All Pairs Shortest Path

● Floyd-Warshall Algorithm
○ Potentially deletes path lengths

in adjacency matrix many times

FloydWarshall():
for k = 1 to n:
 for i = 1 to n:
 for j = 1 to n :
 path[i][j] = ...
 min(path[i][j]; path[i][k] + path[k][j])

All Pairs Shortest Path

● Reversible Floyd-Warshall
[Frank ‘99]
○ Must recover the state of all the

erased distances.
○ Can be seen immediately from full

logging technique.

FloydWarshall():
for k = 1 to n:
 for i = 1 to n:
 for j = 1 to n :
 path[i][j] = ...
 min(path[i][j]; path[i][k] + path[k][j])

All Pairs Shortest Path

● (min, +) Matrix Multiplication
○ Still deleting many entries in the

adjacency matrix
○ Algorithm runs O(lg V) matrix

multiplications

APSPMM(W):
//Given adjacency matrix W
W(1) = W
while m < n-1:

W(2m) = W(m) ⊕ W(m)
m = 2m

return W(m)c

All Pairs Shortest Path
● Reversible (min, +) Matrix

Multiplication [Leighton]
○ Save space by only storing each

intermediate matrix.
○ Each new matrix can be

recomputed from the prior two.

APSPMM(W):
//Given adjacency matrix W
W(1) = W
while m < n-1:

W(2m) = W(m) ⊕ W(m)
m = 2m

return W(m)c

All Pairs Shortest Path
[this paper]
● Reduced Energy (min, +)

Matrix Multiplication
○ Each matrix element can be

calculated reversibly. We now only
erase O(V 2) bits per matrix
multiplication.

APSPMM(W):
//Given adjacency matrix W
W(1) = W
while m < n-1:

W(2m) = W(m) ⊕ W(m)
m = 2m

return W(m)c

All Pairs Shortest Path

● Non-trivial tradeoff between time, space, and energy in
the APSP algorithms.

Open Problems - New Way of Analyzing Algorithms

Any algorithms you want!

● Shortest Path and APSP
● Machine Learning Algorithms
● Dynamic Programming
● Linear Programming
● vEB Trees
● Fibonacci Heaps
● FFT
● String Search
● Geometric Algorithms
● Cryptography

Open Problems - Model Extensions

● Streaming and Sub-Linear Algorithms
○ typically, space-heavy algorithms are easiest to make reversible; thus,

these present a challenge.

● Succinct Data Structures
● Randomized algorithms

○ Motivation for minimizing randomness needed.

● Modeling memory and cache
● New hardware
● Lower bounds on time/space/energy complexity

Acknowledgments

Erik Demaine
Jayson Lynch
Geronimo Mirano
Nirvan Tyagi

Martin Demaine
Kevin Kelly
Maria L. Messick
Licheng Rao

