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Why energy-efficient? Cheaper, Greener, Faster, Longer

● Cheaper and Greener
● Longer battery life
● Faster processors

Computation represents 5% of worldwide 
energy use, growing 4-10% annually 
compared with 3% growth in total energy use 
[Heddeghem 2014]
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Why energy-efficient? Cheaper, Greener, Faster, Longer

● Cheaper and Greener
● Longer battery life
● Faster processors

AMD FX-8370 
clocked at 8.72GHz 
by The Stilt using 
liquid nitrogen 
cooling. 

Computation represents 
5% of worldwide energy 
use, growing 4-10% 
annually compared with 
3% growth in total energy 
use [Heddeghem 2014]



Koomey’s Law

● Energy efficiency of computation 
increases exponentially

● Computations per kWh doubles 
every 1.57 years.

[Koomey, Berard, Sanchez, Wong ‘09]



Landauer’s Principle
[Landauer ‘61]

● Erasing bits has a minimum energy cost
● 1 bit = k T ln 2  Joules

○ k is Boltzman’s constant
○ T is the temperature

● 1 bit = 7.6*10^-28  kWh at room temperature
● Experimental support [BAPCDL ‘12]
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Landauer’s Limit

● Koomey’s Law: energy 
efficiency of computation 
doubles every 1.57 years

● Landauer’s Principle:
○ 1 bit = 7.6*10^-28  kWh                              

● ≈ Five orders of magnitude 
away [Center for Energy 
Efficient Electronic Science]

● At this rate we will hit a 
‘ceiling’ in a few decades.

1.E+17

1.E+18

1.E+19

1.E+20

1.E+21

1.E+22

[Koomey, Berard, Sanchez, Wong ‘09]

Landauer’s Limit



Reversible Computing

● Circumvents Landauer’s Limit - no information destroyed
● Requires that all gates/functions are bijective
● Reversible computing is still universal (given extra ‘garbage’ space)     

[Lecerf ‘63, Bennett ‘73, FT ‘82]
○ Only a constant number of ancilla bits needed for circuits [AGS ‘15]

Fredkin Gate Toffoli Gate



Building Reversible 
Computers
● Split Level Charge Recovery Logic
● Resonant Circuits
● Nanomagnetic Circuits 
● Superconducting Circuits

Cyclos Semiconductor ‘12 

MIT ‘99 



Reversible Computing

● Circumvents Landauer’s Limit - no information destroyed
● Requires that all gates/functions are bijective
● Reversible computing is still universal [Lecerf ‘63, Bennett ‘73, FT ‘82]

○ Only a constant number of ancilla bits needed for circuits [AGS ‘15]

● Existing general results for simulating all algorithms reversibly require 
significantly more computational resources
○ Quadratic space [Bennett ‘79] or
○ Exponential time [Bennett ‘89]  or
○ Trade-off between those extremes [Williams ‘00][BTV ‘01]



● Establish RAM model of computation
● Charge one unit of energy whenever a bit is destroyed.

○ Li and Vitany also pose information-energy model [LV ‘92]

● Some operations are cheap (reversible), others are 
expensive
○ Cost of a function is:

● Examples: 

Landauer Energy Cost
[this paper]

x, y f(x, y)f

x += y
Energy Cost: 0

x >> 1
Energy Cost: 1

x = 0
Energy Cost: w



● Analyze the energy complexity E(n) of algorithms
○ 0 ≤ E(n) ≤ wT(n)

● Create new (semi-)reversible algorithms to minimize the 
energy cost without large time/space overhead

● Understand time/space/energy tradeoff

Semi-Reversible Computing
[this paper]



Algorithms
[this paper]



Data Structures
[this paper]



Basic Building Blocks
[this paper]

● Languages and compiler for semi-reversible computing [DLT ‘16]
● Costs and energy efficient versions for many computer primitives
● Protected vs. General

General if example:

if (a > 2) {
   a -= 4;
}
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Basic Building Blocks
[this paper]

● Languages and compiler for semi-reversible computing [DLT ‘16]
● Costs and energy efficient versions for many computer primitives
● Protected vs. General

Protected for:

for (init; cond; 
reversible update) {
   … cond not
         affected …
}



Algorithmic Techniques for Semi-Reversibility

● Pointer Swapping

● Logging

○ energy cost → space cost

● Copy-out trick, unrolling and reverse-
subroutines

Energy Cost w No Energy Cost

Irreversible:

p = p.next;



● Pointer Swapping

● Logging

○ energy cost → space cost

● Copy-out trick, unrolling and reverse-
subroutines

Reversible, Doubly-linked:

q += p // q was 0
p -= q
p += q.next // p was 0
q -= p.prev
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Sorting Algorithms
[this paper]



● Preserve a copy of the input; if not preserving input, would necessarily pay Ω
(n lg n) energy.

● Attains theoretical irreversible lower bound, O(n lg n) time + O(n) space

Reversible Merge Sort
[this paper]

SORT(A, B)

MERGE(A1’, A2’)

SORT(A1,B)
= [a1, a2,
     … , aN]

= [0, 0, … ,
       0]

= [a1, a2,
     … , aN]

= [ak1, … ,
       akN]

SPLIT

SPLIT

SORT(A2,B)

JOIN

A

B
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● Preserve a copy of the input; if not preserving input, would necessarily pay Ω
(n lg n) energy.

● Attains theoretical irreversible lower bound, O(n lg n) time + O(n) space

Reversible Merge Sort
[this paper]

MERGE(A1’, A2’)

SORT(A1,B)

= [(a1,1),
    (a2,2),
      …
    (aN,N)]

= [(0,0),
      …
    (0,0)]

= [(ak1,k1),
    (ak2,k2),
      …
    (akN,kN)]

SPLIT

SPLIT

SORT(A2,B)

JOIN

= [(a1,1),
    (a2,2),
      …
    (aN,N)]

A

B

A

A’

SORT(A, B)



Data Structure Techniques for Semi-Reversibility

● In general, data structures will accumulate logging space 
with every operation

● Partially solved by periodic rebuilding

+
1. Rots: 010

2. Rots: 001 

3. Rots: 0101

4. Rots: 1001

5. Rots: 1100

Log:



Data Structures!
[this paper]



Graph Algorithms



All Pairs Shortest Path

● Floyd-Warshall Algorithm
○ Potentially deletes path lengths 

in adjacency matrix many times

FloydWarshall():
for k = 1 to n:
    for i = 1 to n:
        for j = 1 to n : 
            path[i][j] = ...
              min(path[i][j]; path[i][k] + path[k][j])



All Pairs Shortest Path

● Reversible Floyd-Warshall  
[Frank ‘99]
○ Must recover the state of all the 

erased distances.
○ Can be seen immediately from full 

logging technique.

FloydWarshall():
for k = 1 to n:
    for i = 1 to n:
        for j = 1 to n : 
            path[i][j] = ...
              min(path[i][j]; path[i][k] + path[k][j])



All Pairs Shortest Path

● (min, +) Matrix Multiplication 
○ Still deleting many entries in the 

adjacency matrix
○ Algorithm runs O(lg V) matrix 

multiplications 

APSPMM(W):
//Given adjacency matrix W
W(1) = W
while m < n-1:

W(2m) = W(m) ⊕ W(m) 
m = 2m

return W(m)c



All Pairs Shortest Path
● Reversible (min, +) Matrix 

Multiplication [Leighton]
○ Save space by only storing each 

intermediate matrix. 
○ Each new matrix can be 

recomputed from the prior two.

APSPMM(W):
//Given adjacency matrix W
W(1) = W
while m < n-1:

W(2m) = W(m) ⊕ W(m) 
m = 2m

return W(m)c



All Pairs Shortest Path
[this paper]
● Reduced Energy (min, +) 

Matrix Multiplication 
○ Each matrix element can be 

calculated reversibly. We now only 
erase O(V 2) bits per matrix 
multiplication.

APSPMM(W):
//Given adjacency matrix W
W(1) = W
while m < n-1:

W(2m) = W(m) ⊕ W(m) 
m = 2m

return W(m)c



All Pairs Shortest Path

● Non-trivial tradeoff between time, space, and energy in 
the APSP algorithms.



Open Problems - New Way of Analyzing Algorithms

Any algorithms you want!

● Shortest Path and APSP
● Machine Learning Algorithms
● Dynamic Programming
● Linear Programming
● vEB Trees
● Fibonacci Heaps
● FFT
● String Search
● Geometric Algorithms
● Cryptography



Open Problems - Model Extensions

● Streaming and Sub-Linear Algorithms
○ typically, space-heavy algorithms are easiest to make reversible; thus, 

these present a challenge.

● Succinct Data Structures
● Randomized algorithms

○ Motivation for minimizing randomness needed.

● Modeling memory and cache
● New hardware
● Lower bounds on time/space/energy complexity
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