Lower Bounds: from circuits to QBF proof systems

Ilario Bonacina KTH

Joint work with Olaf Beyersdorff (Leeds University) Leroy Chew (Leeds University)

January 15, 2016 ITCS Cambridge, MA

In this talk

a general construction for QBF proof systems

lower bounds for strong QBF proof systems

- exploit the full spectrum of circuit lower bounds via
- a new technique to transfer lower bounds

We consider QBFs in **prenex** form with a CNF **matrix**.

e.g. $\forall u \forall u' \exists x \exists x' (\neg u \lor x) \land (u' \lor \neg x')$ $\forall u \exists x (u \lor x) \land (u \lor \neg x)$

We consider QBFs in **prenex** form with a CNF **matrix**.

e.g. $\forall u \forall u' \exists x \exists x' (\neg u \lor x) \land (u' \lor \neg x')$ $\forall u \exists x (u \lor x) \land (u \lor \neg x)$ ranging over {0,1}

We consider QBFs in **prenex** form with a CNF **matrix**.

We consider QBFs in **prenex** form with a CNF **matrix**.

e.g. $\forall u \forall u' \exists x \exists x' (\neg u \lor x) \land (u' \lor \neg x')$ $\forall u \exists x (u \lor x) \land (u \lor \neg x)$

ranging over {0,1}

We consider QBFs in **prenex** form with a CNF **matrix**.

SAT/QBF solving

Theoretical tool to study performance & limitations of SAT/QBF solvers: **proof complexity!**

Proof Complexity

A **proof system** verifies if a string π is a proof of a theorem

- in poly-time wrt | π |
- it has to be sound and complete

propositional proof system = proof system for UNSAT

<u>QBF</u> proof system = proof system for FQBF

Proof Complexity

A **proof system** verifies if a string π is a proof of a theorem

- in poly-time wrt | π |
- it has to be sound and complete

propositional proof system = proof system for UNSAT

<u>QBF</u> proof system = proof system for FQBF

What is the size of the shortest proof for a theorem? (in a given proof system)

Proof Complexity

A **proof system** verifies if a string π is a proof of a theorem

- in poly-time wrt | π |
- it has to be sound and complete

propositional proof system = proof system for UNSAT

<u>QBF</u> proof system = proof system for FQBF

What is the size of the shortest proof for a theorem? (in a given proof system)

There exists a close connection between **Boolean circuits** & lower bounds for **propositional proof systems**

BUT we can make it formal for **QBF** proof systems

BUT we can make it formal for **QBF** proof systems

this talk!

Hilbert type systems with axiom schemes (*e.g.* $A \lor \neg A$) and inference rules, *e.g.* **modus ponens** $A \longrightarrow B$

The circuit class *G* restricts the formulas allowed in the system

Hilbert type systems with axiom schemes (*e.g.* $A \lor \neg A$) and inference rules, *e.g.* **modus ponens** $A \longrightarrow B$

The circuit class *G* restricts the formulas allowed in the system

Hilbert type systems with axiom schemes (*e.g.* $A \lor \neg A$) and inference rules, *e.g.* **modus ponens** $A \land A \longrightarrow B$

B

depth 1-FREGE = Resolution (RES)

The circuit class *G* restricts the formulas allowed in the system

Hilbert type systems with axiom schemes (*e.g.* $A \lor \neg A$) and inference rules, *e.g.* **modus ponens** $A \longrightarrow B$

The circuit class *G* restricts the formulas allowed in the system

Hilbert type systems with axiom schemes (*e.g.* $A \lor \neg A$) and inference rules, *e.g.* **modus ponens** $A \land A \longrightarrow B$

B

AC⁰-FREGE = bounded depth FREGE

The circuit class *G* restricts the formulas allowed in the system

Hilbert type systems with axiom schemes (*e.g.* $A \lor \neg A$) and inference rules, *e.g.* **modus ponens** $\underline{A \land A \longrightarrow B}$

B

depth 1-FREGE = Resolution (RES) $C \lor x, D \lor \neg x$ $C \lor D$

AC⁰-FREGE = bounded depth FREGE

AC⁰[*p*]-FREGE = bounded depth FREGE with MOD_{*p*} gates

The circuit class *G* restricts the formulas allowed in the system

Hilbert type systems with axiom schemes (*e.g.* $A \lor \neg A$) and inference rules, *e.g.* **modus ponens** $\underline{A \land A \longrightarrow B}$

B

depth 1-FREGE = Resolution (RES) $C \lor x, D \lor \neg x$ $C \lor D$

AC⁰-FREGE = bounded depth FREGE

AC⁰[*p*]-FREGE = bounded depth FREGE with MOD_{*p*} gates

TC⁰-FREGE = bounded depth FREGE with threshold gates

A lattice of proof systems

A lattice of proof systems

QBF proof systems

- no unique analogue of Resolution
- various sequent calculi exists as well

[Krajicek,Pudlak '00; Cook,Morioka '05; Egli '12]

 some of the techniques used in Resolution transfer to "QBF Resolution" (e.g. interpolation) some don't (e.g. size-width relationship) [Beyersdorff, Chew, Mahajan, Shukla ICALP'15 & STACS'16]

QBF proof systems

- no unique analogue of Resolution
- various sequent calculi exists as well

[Krajicek,Pudlak '00; Cook,Morioka '05; Egli '12]

 some of the techniques used in Resolution transfer to "QBF Resolution" (e.g. interpolation) some don't (e.g. size-width relationship) [Beyersdorff, Chew, Mahajan, Shukla ICALP'15 & STACS'16]

the usual inference rule of Resolution

 $\frac{C \lor x, \ D \lor \neg x}{C \lor D}$

 $\underline{C} \qquad \underline{C} \qquad \text{where } u \text{ is universal } \& \text{ innermost} \text{ among the vars of } C$ $C|_{u=0} \qquad C|_{u=1}$

∀red rule

C-FREGE+∀red

C-FREGE+∀red has

- the inference rules of *G*-FREGE &
- a **∀red** rule:
 - \underline{L} where (1) u is **universal** & innermost among the vars of L
 - *L*[*u*/*B*] (2) *L*[*u*/*B*] belongs to *C* & *B* contains only vars on the left
 - of *u* in the prefix Q of the false QBF Q. φ to be refuted

G-**FREGE**+**∀red** is sound and complete for QBF

How to prove lower bounds?

- every false QBF has a winning strategy for ∀
- (hope) hard strategies require large proofs
 ≡ short proofs lead to easy strategies
- find false QBFs such that every strategy for ∀ is hard to compute

(using computationally hard functions)

How to prove lower bounds?

- every false QBF has a winning strategy for ∀
- (hope) hard strategies require large proofs
 ≡ short proofs lead to easy strategies
- find false QBFs such that every strategy for ∀ is hard to compute (using computationally hard functions)

Strategy Extraction Theorem

Given a false QBF Q. φ and a refutation π of it in *G*-FREGE+ \forall red it is possible to construct from π in linear time (w.r.t. $|\pi|$) a circuit in the class *G* computing a winning strategy for \forall over Q. φ

How to prove lower bounds?

- every false QBF has a winning strategy for \forall
- (hope) hard strategies require large proofs ≡ short proofs lead to easy strategies
 - find false QBFs such that every strategy for ∀ is hard to compute (*using computationally hard functions*)

Strategy Extraction Theorem

Given a false QBF Q. φ and a refutation π of it in *C*-FREGE+ \forall red it is possible to construct from π in linear time (w.r.t. $|\pi|$) a circuit in the class *C* computing a winning strategy for \forall over Q. φ

> this generalize an analogous result for Q-RES by [Balabanov,Jiang '12]

Let $f(\underline{x})$ be a Boolean function, **Q**-*f* is the following QBF \mathbf{Q} -*f* $\equiv \exists \underline{x} \forall u \exists \underline{t}. u \nleftrightarrow f(\underline{x})$

Let $f(\underline{x})$ be a Boolean function, **Q**-*f* is the following QBF **Q**-*f* $\equiv \exists \underline{x} \forall u \exists \underline{t}. u \nleftrightarrow f(\underline{x})$ encoded as a CNF

$$e.g. \quad \mathbf{Q}\text{-parity} = \exists x_1, \dots, x_n \forall u \exists \underline{t}. \ u \nleftrightarrow x_1 \oplus \dots \oplus x_n$$
$$= \exists x_1, \dots, x_n \forall u \exists t_2, \dots, t_n. \ (u \nleftrightarrow t_n) \land (t_2 \leftrightarrow x_1 \oplus x_2)$$
$$\land \dots$$
$$\land (t_i \leftrightarrow t_{i-1} \oplus x_i)$$
$$\land \dots$$
$$\land (t_n \leftrightarrow t_{n-1} \oplus x_n)$$

A lower bound for $AC^{0}[p]$ -FREGE+ \forall red

For each prime $p \neq 2$, **Q-parity** require exponential size $AC^{0}[p]$ -FREGE+ \forall red proofs

A lower bound for $AC^{0}[p]$ -FREGE+ \forall red

For each prime $p \neq 2$, **Q-parity** require exponential size $AC^{0}[p]$ -FREGE+ \forall red proofs

Proof (sketch).

- by contradiction, let π be a poly-size refutation of **Q-parity** in **AC⁰**[*p*]-FREGE+∀red
- By the Strategy Extraction Theorem we obtain from π a poly-size
 AC⁰[p]-circuit computing parity
- By [Razborov,Smolensky '87] **parity** needs exponential size **AC**⁰[*p*]-circuits

A lower bound for $AC^{0}[p]$ -FREGE+ \forall red

For each prime $p \neq 2$, **Q-parity** require exponential size $AC^{0}[p]$ -FREGE+ \forall red proofs

Proof (sketch).

- by contradiction, let π be a poly-size refutation of **Q-parity** in AC⁰[*p*]-FREGE+∀red
- By the Strategy Extraction Theorem we obtain from π a poly-size
 AC⁰[*p*]-circuit computing parity
- By [Razborov,Smolensky '87] **parity** needs exponential size **AC**⁰[*p*]-circuits

this approach was used for **Q-Res** *by* [Balabanov,Jiang '12; Beyersdorff, Chew,Janota'15]

Separations

There exists a QBF that has poly-size proofs in **depth** *d*-**Frege**+**∀red** & requires proofs of exponential size in **depth** (*d*-3)-**Frege**+**∀red**

p,*q* distinct primes, there exists a QBF that

- require exponential size proofs in AC⁰[*p*]-Frege+∀red
- have poly-size proofs in **AC**⁰[*q*]-**Frege**+**∀red**

TC⁰**-Frege**+**∀red** is exponentially stronger than **AC**⁰[*p*]**-Frege**+**∀red**

Separations

There exists a QBF that has poly-size proofs in **depth** *d***-Frege**+**∀red** & requires proofs of exponential size in **depth** (*d*-3)-**Frege**+**∀red**

propositional case: no separation known with formulas of depth independent of *d*

p,*q* distinct primes, there exists a QBF that

- require exponential size proofs in AC⁰[*p*]-Frege+∀red
- have poly-size proofs in **AC⁰[q]-Frege**+**∀red**

propositional case: wide open

TC⁰**-Frege**+**∀red** is exponentially stronger than **AC**⁰[*p*]**-Frege**+**∀red**

propositional case: wide open

Separations

There exists a QBF that has poly-size proofs in **depth** *d*-**Frege**+**∀red** & requires proofs of exponential size in **depth** (*d*-3)-**Frege**+**∀red**

we use Q-Sipser_d where Sipser_d esponentially separates *depth d* from *depth* (*d*-1) circuits [Hastad '86]

propositional case: no separation known with formulas of depth independent of *d*

p,*q* distinct primes, there exists a QBF that

- require exponential size proofs in AC⁰[p]-Frege+∀red
- have poly-size proofs in **AC**⁰[*q*]-**Frege**+**∀red**

carefully encoding Q-MOD_q & [Smolensky '87] lower bound propositional case: wide open

TC⁰**-Frege**+**∀red** is exponentially stronger than **AC**⁰[*p*]**-Frege**+**∀red**

carefully encoding Q-majority & [Razborov-Smolensky '87] lower bound propositional case: wide open

Conditional lower bounds

If PSPACE $\not\subseteq$ NC¹ then there exists a false QBF requiring superpolynomial size refutations in **Frege+** \forall **red**

If PSPACE $\not\subseteq$ P/_{poly} then there exists a false QBF requiring superpolynomial size refutations in **eFrege+∀red**

¿(*Unconditional*) Size lower bounds for Frege+∀red?

Conditional lower bounds

If PSPACE $\not\subseteq$ NC¹ then there exists a false QBF requiring superpolynomial size refutations in **Frege+∀red**

If PSPACE $\not\subseteq$ P/_{poly} then there exists a false QBF requiring superpolynomial size refutations in **eFrege+∀red**

> propositional case: wide open

propositional case:

wide open

¿(*Unconditional*) Size lower bounds for **Frege+∀red**?

Conditional lower bounds

If PSPACE $\not\subseteq$ NC¹ then there exists a false QBF requiring superpolynomial size refutations in Frege+ \forall red

If PSPACE $\not\subseteq$ P/_{poly} then there exists a false QBF requiring superpolynomial size refutations in **eFrege+∀red**

> propositional case: wide open

propositional case:

wide open

¿(*Unconditional*) Size lower bounds for **Frege+∀red**?

Thanks!

<u>ilario@kth.se</u>