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In this talk

a general construction for QBF proof systems

lower bounds for strong QBF proof systems

* exploit the full spectrum of circuit lower bounds via
* anew technique to transfer lower bounds
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e.g. VuVu'Ixdx" (-u v x) A (u’ v -x’)
Vudx (uvx) A(uv-x)
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SAT

decide if a CNF
is satisfiable

| NP-complete |

SAT-solvers
very successful

SAT /QBF solving

TQBF

decide if a QBF with
no free variables is true

PSPACE-complete

QBF-solvers at an early stage
but they apply also
to planning and verification

Theoretical tool to study performance & limitations of

SAT / QBF solvers: proof complexity!
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Proof Complexity

A proof system verifies if a string 7t is a proof of a theorem
° in poly-time wrt | 7t |
* it has to be sound and complete

propositional proof system = proof system for UNSAT

OBF proof system = proof system for FQBF

What is the size of the shortest proof for a theorem?

(in a given proof system)

Computational Complexity (NP vs coNP etc)

T

Proof Complexity

— T~

QBF/SAT solving FO logic
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A longstanding belief

not formal! (yet)

There exists a close connection between

Boolean circuits
&
lower bounds for propositional proof systems

BUT we can make it formal for QBF proof systems

this talk!
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(-FREGE systems

The circuit class 6
restricts the formulas
allowed in the system

Hilbert type systems with axiom schemes (e.g. Av —A) and inference rules,

e.g. modus ponens A4 _A—B
B

depth 1-FREGE = Resolution (RES) CVy DV -y
CvD

ACO-FREGE =bounded depth FREGE

AC'[p]-FREGE = bounded depth FREGE
with MOD, gates

TCO-FREGE = bounded depth FREGE
with threshold gates
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A lattice of proof systems

no superpolynomial L.b. for the
size of proofs known

eFREGE

!

FREGE

>
TCO-FREGE e

=

AC’[p]-FREGE

/

ACO-FREGE
Cutting Planes

Polynomial Calculus

Resolution

S

superpolynomial L.b. for the Truth Tables
size of proofs known
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QBF proof systems

LQU+*-Res

NN

IR-calc LD-Q-Res QU-Res

| T~

vexp+Res Q-Res
\ l CDCL SO|Ving
tree-Q-Res expansion solving

°* no unique analogue of Resolution
* various sequent calculi exists as well
[Krajicek,Pudlak "00; Cook,Morioka "05; Egli “12]
* some of the techniques used in Resolution transfer to “QBF Resolution”

(e.g. interpolation) some don’t (e.g. size-width relationship)
[Beyersdorff, Chew, Mahajan, Shukla ICALP’15 & STACS’16]
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G-FREGE+Vred

G-FREGE+Vred has
* the inference rules of 6G:FREGE &

* a Yred rule;

L where (1) u is universal & innermost among the vars of L
L[u/B] (2) L[u/B] belongs to 6’& B contains only vars on the left
of u in the prefix Q of the false QBF Q.¢ to be refuted

G-FREGE+Vred is sound and complete for QBF

11
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(using computationally hard functions)

Strategy Extraction Theorem

Given a false QBF Q.@ and a refutation 7 of it in 6G-FREGE+Vred
it is possible to construct from 7 in linear time (w.r.t. | 7 |) a circuit in

the class 6’computing a winning strategy for V over Q.

this generalize an analogous
result for Q-RES by

[Balabanov,Jiang "12]
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From functions to QBFs

Let f(x) be a Boolean function, Q-f is the following QBF
Q-f = dxVudt. u «+ f(x)
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Let f(x) be a Boolean function, Q-f is the following QBF

Q-f = xVudt. u + flx)

auxiliary variables encoded as a CNF

describing a circuit
computing f

The only winning strategy for V to win Q-fis to play u<f(x)

e.g. Q-parity=3dxy,..., x,Vudt. u »x1® --- ® x,
= Ax1,..., x,Yud to,..., th. (U t,) A (2> X1@P x2)
N ...
A (tie ti1 ® x;)
N ...
A (tne tn1 @ xy)

13



A lower bound for AC?[p]-FREGE+V'red

For each prime p = 2, Q-parity require exponential size
ACOp]-FREGE+Vred proofs

14



A lower bound for AC?[p]-FREGE+V'red

For each prime p = 2, Q-parity require exponential size
ACOp]-FREGE+Vred proofs

Proof (sketch).
* by contradiction, let @ be a poly-size refutation of Q-parity
in AC%p]-FREGE+Vred

* By the Strategy Extraction Theorem we obtain from 7 a poly-size
ACOp]-circuit computing parity

* By [Razborov,Smolensky '87] parity needs exponential size AC°[p]-circuits ﬁ

14



A lower bound for AC?[p]-FREGE+V'red

For each prime p = 2, Q-parity require exponential size
ACOp]-FREGE+Vred proofs

Proof (sketch).
* by contradiction, let @ be a poly-size refutation of Q-parity
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* By the Strategy Extraction Theorem we obtain from 7 a poly-size
ACOp]-circuit computing parity

* By [Razborov,Smolensky '87] parity needs exponential size AC°[p]-circuits ﬁ

this approach was used f07’ Q-Res b}/ [Balabanov,Jiang "12; Beyersdorff, Chew,Janota’15]
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Separations

There exists a QBF that has poly-size proofs in depth d-Frege+Vred &

requires proofs of exponential size in depth (d-3)-Frege+Vred

we use Q-Sipser; where Sipsery propositional case:
esponentially separates no separation known with formulas
depth d from depth (d-1) circuits of depth independent of d

[Hastad '86]

p,q distinct primes, there exists a QBF that
* require exponential size proofs in AC’[pl-Frege+Vred
* have poly-size proofs in AC°[g]-Frege+Vred

carefully encoding Q-MOD, propositional case:

& [Smolensky "87] wide open
lower bound

TCO-Frege+Vred is exponentially stronger than AC?[p]-Frege+Vred

carefully encoding Q-majority propositional case:

& [Razborov-Smolensky "87] wide open

lower bound
15



Conditional lower bounds

[f PSPACE ¢ NC' then there exists a false QBF requiring super-

polynomial size refutations in Frege+Vred

If PSPACE ¢ P/poly then there exists a false QBF requiring super-

polynomial size refutations in eFrege+Vred

¢ (Unconditional) Size lower bounds for Frege+‘v’red?
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wide open
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