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In this talk

a general construction for QBF proof systems

lower bounds for strong QBF proof systems
• exploit the full spectrum of circuit lower bounds via
• a new technique to transfer lower bounds
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Quantified Boolean Formulas (QBF)
We consider QBFs in prenex form with a CNF matrix.

e.g. ∀u∀u’∃x∃x’ (¬u ∨ x) ⋀ (u’ ∨ ¬x’)
      ∀u∃x (u ∨ x) ⋀ (u ∨ ¬x)
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SAT/QBF solving

SAT-solvers 
very successful

QBF-solvers at an early stage 
but they apply also 

to planning and verification

Theoretical tool to study performance & limitations of
SAT/QBF solvers: proof complexity!

SAT TQBF

decide if  a CNF 
is satisfiable

decide if  a QBF with 
no free variables is true

NP-complete PSPACE-complete
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Proof Complexity

A proof system verifies if a string " is a proof of a theorem
• in poly-time wrt | " |
• it has to be sound and complete 

propositional proof system = proof system for UNSAT

QBF proof system = proof system for FQBF
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Proof Complexity

A proof system verifies if a string " is a proof of a theorem
• in poly-time wrt | " |
• it has to be sound and complete 

propositional proof system = proof system for UNSAT

QBF proof system = proof system for FQBF

What is the size of the shortest proof for a theorem? 
(in a given proof system)

Proof Complexity

Computational Complexity (NP vs coNP etc)

QBF/SAT solving FO logic
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A longstanding belief

There exists a close connection between 
Boolean circuits 

& 
lower bounds for propositional proof systems
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A longstanding belief

There exists a close connection between 
Boolean circuits 

& 
lower bounds for propositional proof systems

not formal! (yet)

BUT we can make it formal for QBF proof systems

this talk!
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C-FREGE systems

Hilbert type systems with axiom schemes (e.g. A∨ ¬A) and inference rules,
e.g. modus ponens

                            
A   A ⟶B   

B

The circuit class C
restricts the formulas
allowed in the system

depth 1-FREGE = Resolution (RES)

AC0[p]-FREGE = bounded depth FREGE 
                  with MODp gates

AC0-FREGE = bounded depth FREGE 

TC0-FREGE = bounded depth FREGE 
                  with threshold gates

C ∨ x,  D ∨ ¬x
C ∨ D
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AC0-FREGE 

Truth Tables

Resolution

Polynomial Calculus

Cutting Planes

FREGE

eFREGE

AC0[p]-FREGE

TC0-FREGE

⋮

superpolynomial l.b. for the 
size of proofs known

no superpolynomial l.b. for the 
size of proofs known

A lattice of proof systems
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AC0-FREGE 

Truth Tables

Resolution

Polynomial Calculus

Cutting Planes

FREGE

eFREGE

AC0[p]-FREGE

TC0-FREGE

⋮

in the QBF analogue

superpolynomial l.b. for the 
size of proofs known

no superpolynomial l.b. for the 
size of proofs known

A lattice of proof systems
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QBF proof systems

tree-Q-Res

Q-Res

LD-Q-Res QU-Res

LQU+-Res

• no unique analogue of Resolution
• various sequent calculi exists as well  

• some of the techniques used in Resolution transfer to “QBF Resolution”  
(e.g. interpolation) some don’t (e.g. size-width relationship)

IRM-calc

IR-calc

∀exp+Res

expansion solving

CDCL solving

[Krajicek,Pudlak ’00; Cook,Morioka ’05; Egli ‘12]

[Beyersdorff, Chew, Mahajan, Shukla ICALP’15 & STACS’16]
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RES+∀red (= QU-Res)

C ∨ x,  D ∨ ¬x
C ∨ D

the usual inference 
rule of Resolution

       C               C      where u is universal & innermost among the vars of C  
   C|u=0         C|u=1

e.g. ∀u∃x (u ∨ x) ⋀ (u ∨ ¬x)

this is crucial!

(u ∨ x) (u ∨ ¬x)

u

⟘

∀red rule
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C-FREGE+∀red

C-FREGE+∀red has 
• the inference rules of C-FREGE & 
• a ∀red rule:  

       L        where (1) u is universal & innermost among the vars of L 
   L[u/B]                (2) L[u/B] belongs to C & B contains only vars on the left        
                                   of u in  the prefix Q of the false QBF Q.! to be refuted

C-FREGE+∀red is sound and complete for QBF
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How to prove lower bounds?

• every false QBF has a winning strategy for ∀
• (hope) hard strategies require large proofs  

 ≣ short proofs lead to easy strategies
• find false QBFs such that every strategy for ∀ is hard to compute  

(using computationally hard functions)
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How to prove lower bounds?

Strategy Extraction Theorem

Given a false QBF Q.! and a refutation " of it in C-FREGE+∀red 
it is possible to construct from " in linear time (w.r.t. | " |) a circuit in  

the class C computing a winning strategy for ∀ over Q.!

this generalize an analogous 
result for Q-RES by

[Balabanov,Jiang ’12] 

• every false QBF has a winning strategy for ∀
• (hope) hard strategies require large proofs  

 ≣ short proofs lead to easy strategies
• find false QBFs such that every strategy for ∀ is hard to compute  

(using computationally hard functions)

✔
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From functions to QBFs

Let f(x) be a Boolean function, Q-f is the following QBF 
Q-f ≣ ∃x∀u∃t. u ↮ f(x)

The only winning strategy for ∀ to win Q-f is to play u←f(x)  
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From functions to QBFs

Let f(x) be a Boolean function, Q-f is the following QBF 
Q-f ≣ ∃x∀u∃t. u ↮ f(x)

encoded as a CNFauxiliary variables
describing a circuit

computing f

The only winning strategy for ∀ to win Q-f is to play u←f(x)  

e.g.  Q-parity = ∃ x1,…, xn ∀u∃t. u ↮ x1 ⊕ � ⊕ xn

=  ∃ x1,…, xn ∀u∃ t2,…, tn. (u ↮ tn) ⋀ (t2↔ x1 ⊕ x2) 
                                                           ⋀ … 
                                                           ⋀ (ti↔ ti-1 ⊕ xi) 
                                                           ⋀ … 
                                                           ⋀ (tn↔ tn-1 ⊕ xn)
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 AC0[p]-FREGE+∀red proofs  
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Proof (sketch).
• by contradiction, let " be a poly-size refutation of Q-parity  

in AC0[p]-FREGE+∀red 
• By the Strategy Extraction Theorem we obtain from " a poly-size  

AC0[p]-circuit computing parity

• By [Razborov,Smolensky ’87] parity needs exponential size AC0[p]-circuits ☠

this approach was used for Q-Res by [Balabanov,Jiang ’12; Beyersdorff, Chew,Janota’15]



There exists a QBF that has poly-size proofs in depth d-Frege+∀red  & 
requires proofs of exponential size in depth (d-3)-Frege+∀red
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Separations
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• require exponential size proofs in AC0[p]-Frege+∀red 
• have poly-size proofs in AC0[q]-Frege+∀red
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TC0-Frege+∀red is exponentially stronger than AC0[p]-Frege+∀red
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15

propositional case: 
no separation known with formulas 

of depth independent of d

we use Q-Sipserd where Sipserd

esponentially separates 
depth d from depth (d-1) circuits 

[Hastad ’86] 

p,q distinct primes, there exists a QBF that 
• require exponential size proofs in AC0[p]-Frege+∀red 
• have poly-size proofs in AC0[q]-Frege+∀red

propositional case: 
wide open

carefully encoding Q-MODq 
& [Smolensky ’87] 

lower bound
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Conditional lower bounds

If PSPACE ⊈ NC1 then there exists a false QBF requiring super-
polynomial size refutations in Frege+∀red

If PSPACE ⊈ P/poly  then there exists a false QBF requiring super-
polynomial size refutations in eFrege+∀red 

16

¿(Unconditional) Size lower bounds for Frege+∀red?
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¿(Unconditional) Size lower bounds for Frege+∀red?

Thanks!
ilario@kth.se


