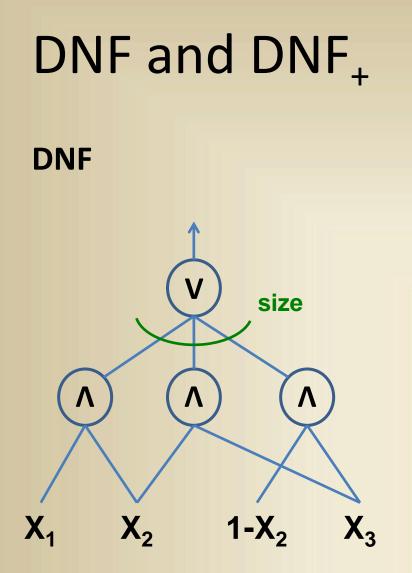
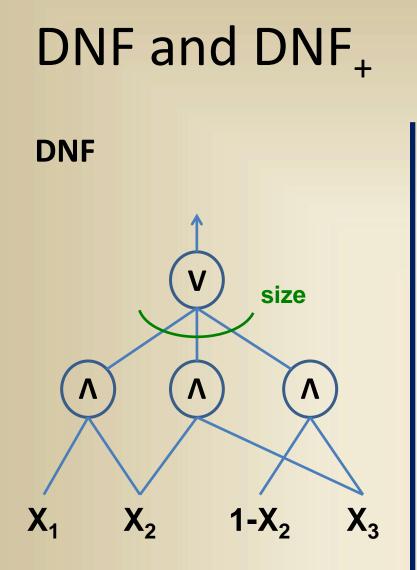
On the Complexity of DNF of Parities

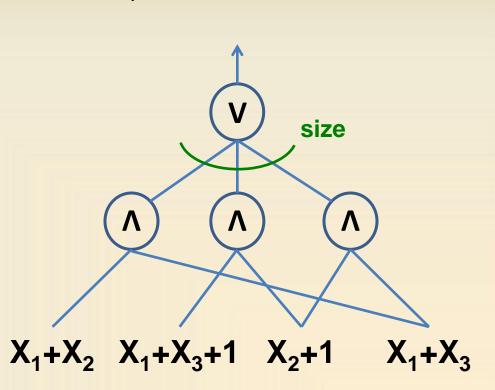
Igor Shinkar (NYU)

Joint work with Gil Cohen (Caltech)

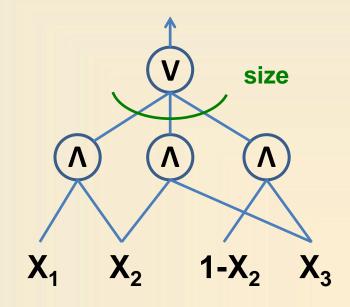




DNF₊

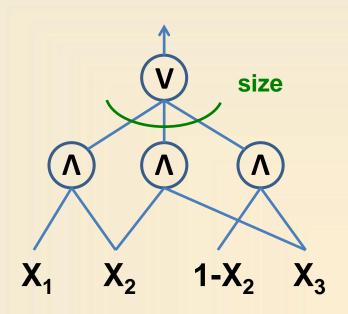


Accepting inputs of a DNF formula



Accepting inputs of a DNF formula

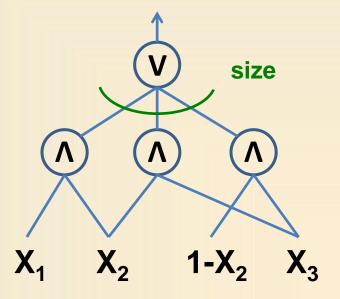
Each AND gate is an indicator of a *subcube* (e.g., defined by $X_2=0 X_3=1$).



Accepting inputs of a DNF formula

Each AND gate is an indicator of a *subcube* (e.g., defined by $X_2=0 X_3=1$).

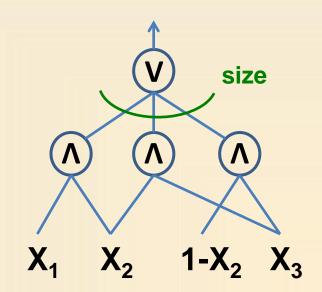
→ DNF is an indicator of a union of subcubes.



DNF-size of a boolean function

Definition: Let $f: \{0,1\}^n \rightarrow \{0,1\}$

sizeDNF(f) = minimal size of a DNF computing f.

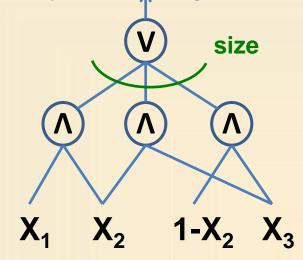


DNF-size of a boolean function

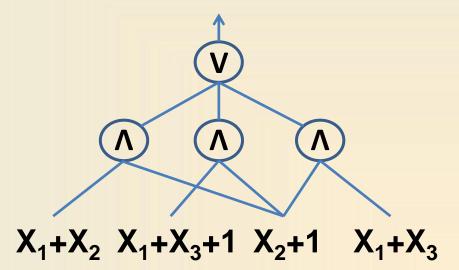
Definition: Let $f: \{0,1\}^n \rightarrow \{0,1\}$

sizeDNF(f) = minimal size of a DNF computing f.

Equivalently, it is the minimal number of subcubes needed to cover the set $\{x \in \{0,1\}^n : f(x) = 1\}$.

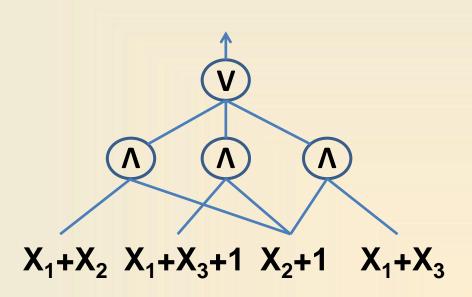


Accepting inputs of a DNF₊ formula



Accepting inputs of a DNF₊ formula

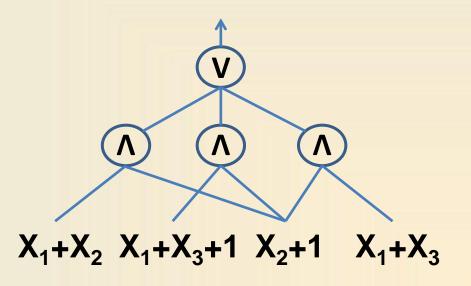
Each AND gate is an indicator of a *subspace*.



Accepting inputs of a DNF₊ formula

Each AND gate is an indicator of a *subspace*.

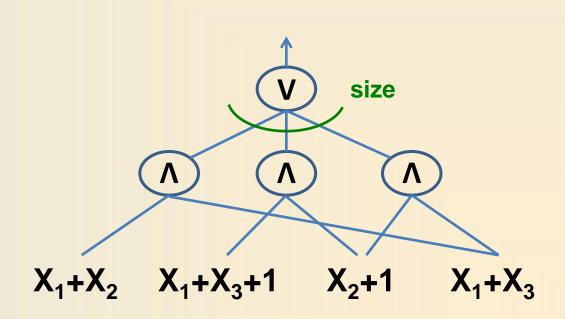
 \rightarrow DNF₊ is an indicator of a union of subspaces.



DNF₊ size of a boolean function

Definition: Let $f: \{0,1\}^n \rightarrow \{0,1\}$

 $sizeDNF_{+}(f) = minimal size of a DNF_{+} computing f.$

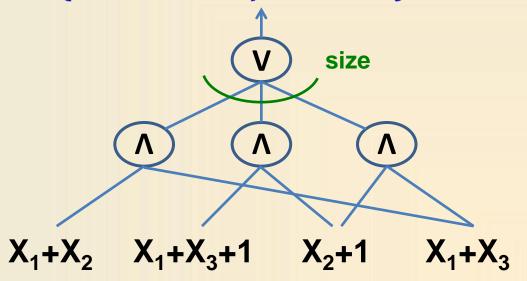


DNF₊ size of a boolean function

Definition: Let $f: \{0,1\}^n \rightarrow \{0,1\}$

sizeDNF₊(f) = minimal size of a DNF₊ computing f.

Equivalently, it is the minimal number of *subspaces* needed to cover the set $\{x \in \{0,1\}^n : f(x) = 1\}$.



The obvious example: XOR function

 $sizeDNF(XOR_n) = 2^{n-1}$ $sizeDNF_+(XOR_n) = 1$

What about the Majority function?

What about the Majority function?

Fact: sizeDNF(Majority_n) =
$$\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$$
.

What about the Majority function?

<u>Fact</u>: *sizeDNF*(*Majority*_n) = $\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$.

The size of the middle layer of the hypercube

What about the Majority function?

<u>Fact</u>: *sizeDNF*(*Majority*_n) = $\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$.

The size of the middle layer of the hypercube

<u>Upper bound</u>: For each point in the middle layer take the subcube above it

What about the Majority function?

<u>Fact</u>: *sizeDNF*(*Majority*_n) = $\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$.

The size of the middle layer of the hypercube

Upper bound:

For each point in the middle layer take the subcube above it

Lower bound:

Each point in the middle layer must be in a different subcube

What about the Majority function?

Fact: sizeDNF(Majority_n) =
$$\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$$
.

What about the Majority function?

Fact: *sizeDNF*(*Majority*_n) =
$$\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$$
.

<u>Question</u>: What is $sizeDNF_+(Majority_n)$?

What about the Majority function?

Fact: *sizeDNF*(*Majority*_n) =
$$\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$$
.

<u>Question</u>: What is $sizeDNF_+(Majority_n)$?

<u>Theorem</u>: $sizeDNF_+(Majority_n) \le poly(n) \cdot 2^{n/2}$.

What about the Majority function?

Fact: *sizeDNF*(*Majority*_n) =
$$\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$$
.

<u>Question</u>: What is $sizeDNF_+(Majority_n)$?

<u>Theorem</u>: $sizeDNF_+(Majority_n) \le poly(n) \cdot 2^{n/2}$.

Quadratically smaller than sizeDNF.

What about the Majority function?

Fact: *sizeDNF*(*Majority*_n) =
$$\binom{n}{(n+1)/2} \approx \frac{2^n}{\sqrt{n}}$$
.

<u>Question</u>: What is $sizeDNF_+(Majority_n)$?

<u>Theorem</u>: $sizeDNF_+(Majority_n) \le poly(n) \cdot 2^{n/2}$.

Tight up to poly(n) factor

<u>Theorem 1</u>: $sizeDNF_+(Majority_n) \le poly(n) \cdot 2^{n/2}$.

Quadratically smaller than sizeDNF

<u>Theorem 1</u>: $sizeDNF_+(Majority_n) \le poly(n) \cdot 2^{n/2}$.

Quadratically smaller than sizeDNF

<u>Theorem 2</u>: For every symmetric $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) \le poly(n) \cdot 1.5^n$.

Compare to sizeDNF(XOR) = 2^{n-1}

A general upper bound on DNF₊ complexity

<u>Theorem 3</u>: For every $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) = O(2^n/n)$.

A general upper bound on DNF₊ complexity

<u>Theorem 3</u>: For every $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) = O(2^n/n)$.

Smaller than sizeDNF(XOR) by O(n) factor A general upper bound on DNF₊ complexity

Theorem 3: For every
$$f: \{0,1\}^n \rightarrow \{0,1\}$$

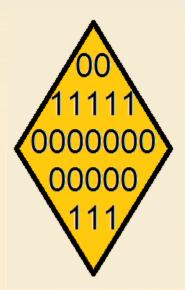
sizeDNF₊ $(f) = O(2^n/n)$.

Almost tight: Affine dispersers for dimension O(log(n)) require $sizeDNF(f) \ge 2^n/poly(n).$ More results in the paper...

Some proof sketches:

<u>Theorem 2</u>: For every symmetric $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) \le poly(n) \cdot 1.5^n$.

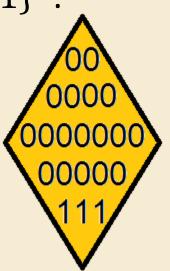
<u>Theorem 2</u>: For every symmetric $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) \le poly(n) \cdot 1.5^n$.



<u>Theorem 2</u>: For every symmetric $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) \le poly(n) \cdot 1.5^n$.

<u>Proof</u>: Let $k \in \{0, 1, ..., n\}$.

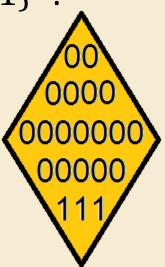
Let g_k be the indicator of the k'th layer of $\{0,1\}^n$.



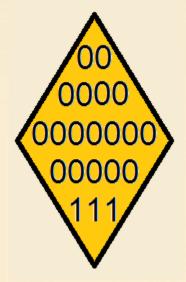
<u>Theorem 2</u>: For every symmetric $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) \le poly(n) \cdot 1.5^n$.

<u>Proof</u>: Let $k \in \{0, 1, ..., n\}$.

Let g_k be the indicator of the k'th layer of $\{0,1\}^n$. It is enough to prove the theorem for g_k .

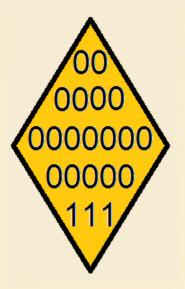


<u>Theorem 2'</u>: Let $k \in \{0, 1, ..., n/2\}$. Let g_k be the indicator of the k'th layer of $\{0, 1\}^n$. Then $sizeDNF_+(g_k) \le poly(n) \cdot 2^{(H(p)-p)n}$, where $p = \frac{k}{n} \in [0, 0.5]$.



<u>Theorem 2'</u>: Let $k \in \{0, 1, ..., n/2\}$. Let g_k be the indicator of the k'th layer of $\{0, 1\}^n$. Then $sizeDNF_+(g_k) \le poly(n) \cdot 2^{(H(p)-p)n}$, where $p = \frac{k}{n} \in [0, 0.5]$.

Fact: $2^{(H(p)-p)n} \le 1.5^n$ for all $p \in [0,0.5]$.



Theorem 2' [special case of k = n/2]: Let $g_{n/2}$ be the indicator of the *middle* layer of $\{0,1\}^n$. Then

sizeDNF₊ $(g_{n/2}) \leq n \cdot 2^{n/2}$.

Theorem 2' [special case of k = n/2]: Let $g_{n/2}$ be the indicator of the *middle* layer of $\{0,1\}^n$. Then

sizeDNF₊
$$(g_{n/2}) \leq n \cdot 2^{n/2}$$
.

Proof:

Theorem 2' [special case of k = n/2]: Let $g_{n/2}$ be the indicator of the *middle* layer of $\{0,1\}^n$. Then

sizeDNF₊
$$(g_{n/2}) \le n \cdot 2^{n/2}$$
.

Proof:

Step 1: Find an affine subspace V of $\dim(V) = n/2$ such that V is contained in the middle layer of $\{0,1\}^n$.

Theorem 2' [special case of k = n/2]: Let $g_{n/2}$ be the indicator of the *middle* layer of $\{0,1\}^n$. Then

sizeDNF₊
$$(g_{n/2}) \leq n \cdot 2^{n/2}$$
.

Proof:

Step 1: Find an affine subspace V of $\dim(V) = n/2$ such that V is contained in the middle layer of $\{0,1\}^n$.

One subspace covers 2^{n/2} points

Theorem 2' [special case of k = n/2]: Let $g_{n/2}$ be the indicator of the *middle* layer of $\{0,1\}^n$. Then

sizeDNF₊
$$(g_{n/2}) \le n \cdot 2^{n/2}$$
.

Proof:

Step 1: Find an affine subspace V of $\dim(V) = n/2$ such that V is contained in the middle layer of $\{0,1\}^n$.

Theorem 2' [special case of k = n/2]: Let $g_{n/2}$ be the indicator of the *middle* layer of $\{0,1\}^n$. Then

sizeDNF₊
$$(g_{n/2}) \leq n \cdot 2^{n/2}$$
.

Proof:

Step 1: Find an affine subspace V of dim(V) = n/2such that V is contained in the middle layer of $\{0,1\}^n$. Step 2: Permute the coordinates and find $\sim n2^{n/2}$ subspaces that together cover the entire middle layer.

Step 1: Find an affine subspace V of dim(V) = n/2such that V is contained in the middle layer of $\{0,1\}^n$.

<u>Step 1</u>: Find an affine subspace V of dim(V) = n/2such that V is contained in the middle layer of $\{0,1\}^n$.

Define
$$V = \{x \in \{0,1\}^n : \begin{array}{c} x_1 + x_2 = 1 \\ x_3 + x_4 = 1 \\ \dots \\ x_{n-1} + x_n = 1 \end{array} \}$$

<u>Step 2</u>: Permute the coordinates.

<u>Step 2</u>: Permute the coordinates.

Pick a random permutation $\sigma \in S_n$

Define
$$V_{\sigma} = \{ x \in \{0,1\}^n : \begin{array}{l} x_{\sigma(1)} + x_{\sigma(2)} = 1 \\ x_{\sigma(3)} + x_{\sigma(4)} = 1 \\ \dots \\ x_{\sigma(n-1)} + x_{\sigma(n)} = 1 \end{array} \}$$

Completing the proof:

For a random $\sigma \in S_n$ every x is contained in V_σ with probability

$$\Pr[x \in V_{\sigma}] = \frac{2^{n/2}}{\binom{n}{n/2}} \approx 2^{-n/2}$$

Completing the proof:

For a random $\sigma \in S_n$ every x is contained in V_σ with probability

$$\Pr[x \in V_{\sigma}] = \frac{2^{n/2}}{\binom{n}{n/2}} \approx 2^{-n/2}$$

Taking $n2^{n/2}$ random permutations will cover all x's with high probability. Therefore $sizeDNF_+(g_{n/2}) \le n \cdot 2^{n/2}$

<u>Theorem 3</u>: For every $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) = O(2^n/n)$.

<u>Theorem 3</u>: For every $f: \{0,1\}^n \rightarrow \{0,1\}$ sizeDNF₊ $(f) = O(2^n/n)$.

Proof: Follows immediately from the following claim:

<u>Claim</u>: Let $A \subset \{0,1\}^n$ of size $|A| = \epsilon 2^n$ ($\epsilon > 2^{-n/4}$). Then, A contains an affine subspace V of dimension $\dim(V) > \log(n) - \log \log 1/\epsilon - 2$.

<u>Claim</u>: Let $A \subset \{0,1\}^n$ of size $|A| = \epsilon 2^n$ ($\epsilon > 2^{-n/4}$). Then, A contains an affine subspace V of dimension $\dim(V) > \log(n) - \log \log 1/\epsilon - 2$.

<u>Claim</u>: Let $A \subset \{0,1\}^n$ of size $|A| = \epsilon 2^n$ ($\epsilon > 2^{-n/4}$). Then, A contains an affine subspace V of dimension $\dim(V) > \log(n) - \log \log 1/\epsilon - 2$.

Proof:

Gowers-Cauchy-Schwartz inequality.

 $\Pr[x + Span(y_1, \dots, y_d) \subset A] > \epsilon^{2^d}$

Open problems

- 1. Give an explicit $f: \{0,1\}^n \to \{0,1\}$ such that a DNF₊ circuit that ϵ -approximates f must be of size at least 1.1^n .
- 2. Can small DNF₊ approximate an affine extractor?

Thank You