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PCP Theorem – Hardness of approximation: 

[FGLSS ‘96]: It is NP-hard to find a clique of size k/2. 

[Håstad ‘99]: For k=n0.99 it is NP-hard to find a clique of size n0.01. 

 

Well, what can I say? 
Looks like a very hard problem… 



Parameterized complexity 

The parameterized k-Clique problem: 

Input: A graph G=(V,E) on n vertices. 
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Now we have the trivial algorithm whose running time is O(nk). 
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VertexCover can be solved in 
polynomial time for k=O(log(n)). 

Assuming ETH, k-Clique cannot be solved in time f(k) · poly(n). 



Approximating the Clique problem 

Gap-Clique(k, k/2) problem: 

Input: A graph G=(V,E) on n vertices. 
Goal: Decide between: 

• YES case: G contains a k-clique. 

• NO case: G contains no clique of size k/2-clique. 

 

Question: Can we solve Gap-Clique in time f(k) · poly(n)? 

 

 Is the Gap-Clique problem  fixed-parameter tractable? 



Main Result 

In the paper we give evidence that 
Gap-Clique(k, k/2) is not fixed-parameter tractable. 

 

We define a constraint satisfaction problem called k-DEG-2-SAT, 
and show an FPT-reduction  
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such that 
 
1. (x,k) ∈ A if and only if (x’ ,k’ ) ∈ B 
2. k’ depends only on k. 
3. The running time of the reduction is f(k) · poly(n). 

If A ≤FPTB and B has a FPT-algorithm,  
then A also has an FPT-algorithm . 
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Main Result 
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We define a constraint satisfaction problem called k-DEG-2-SAT, 
and show an FPT-reduction  

k-DEG-2-SAT ≤FPT Gap-Clique(k, k/2) 

 

Caveat: We do not know the status 
of the k-DEG-2-SAT problem. 
 Could be fixed-parameter tractable … 
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The k-DEG-2-SAT problem: 

Input: A finite field F of size n, and a system of k quadratic 
equations over F in k variables x1,…xk. 

 p1(x1,…xk)=0,   …   pk(x1,…xk)=0.  

Goal: Is there a solution x1,…xk∈F that satisfies all the equations?  
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Some observations: 

1. There is a trivial algorithm with running time O(nk). 

2. Using Gröbner bases it is possible to find a solution 
in the extension field of F in FPT-time. 
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The k-DEG-2-SAT problem: 

Input: A finite field F of size n, and a system of k quadratic 
equations over F in k variables x1,…xk. 

 p1(x1,…xk)=0,   …   pk(x1,…xk)=0.  

Goal: Is there a solution x1,…xk∈F that satisfies all the equations?  

 

Note: For each n there are npoly(k) instances of size n. 
Doesn’t seem to rule out hardness for FPT-algorithms. 
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Main Result 

Theorem(Main): There exists an FPT-reduction  

k-DEG-2-SAT ≤FPT Gap-Clique(k, k/2) 

Proof: 

Use algebraic techniques from the proof of the PCP theorem 
[AS, ALMSS, FGLSS, LFKN, BLR] 

• Low degree extension 

• Sum-check protocol 

• BLR linearity testing/self correcting 

• FGLSS reduction 



Open problems 

1. Give more evidence that Gap-Clique(k, k/2) 
is not fixed-parameter tractable. 
(Ideally: show k-Clique ≤FPT Gap-Clique(k, k/2)) 

 

2. Show Gap-Clique(k, k/2) ≤FPT Gap-Clique(k, k0.9). 

 

3. Is Gap-Clique(k, loglog(k)) fixed-parameter tractable? 
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