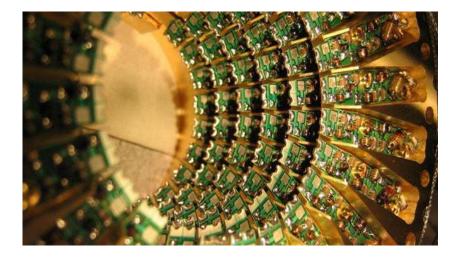
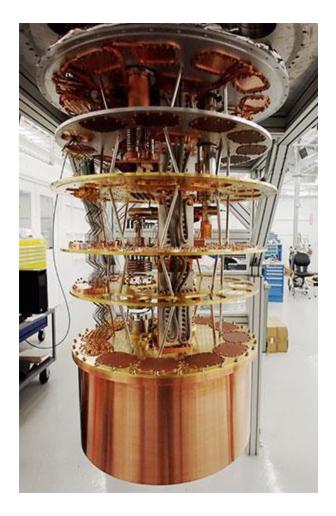
The Space "Just Above" BQP


Adam Bouland

Based on joint work with Scott Aaronson, Joseph Fitzsimons and Mitchell Lee arXiv: 1412:6507 ITCS '16



Quantum Computers

Quantum Computers...

CAN efficiently

• Factor integers [Shor]

CANNOT efficiently

- Solve black-box NP-hard problems [BBBV]
 Searching N item list takes θ(N^1/2) time
- Solve black-box SZK-hard problems [Aaronson]

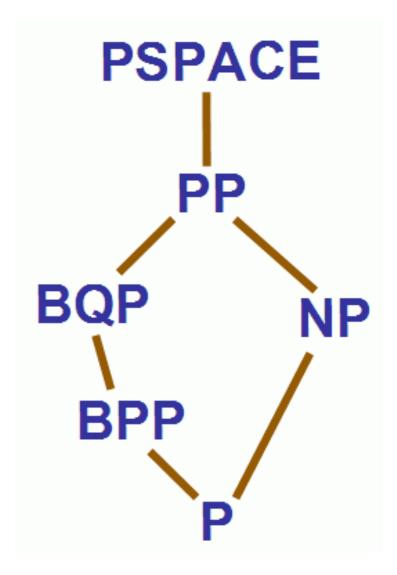
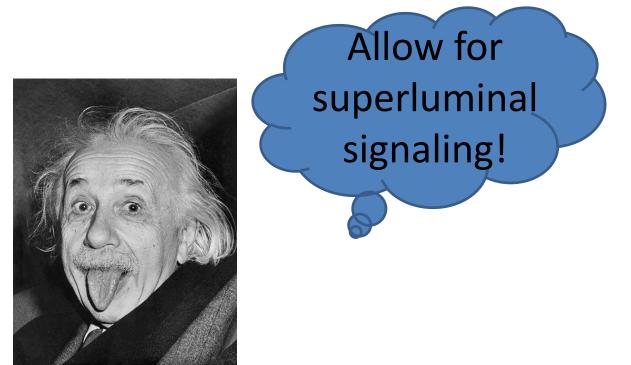


Image credit: Scott Aaronson

Quantum Mechanics

- 1. State is vector $v \in \mathbb{C}^d$ $||v||^2 = 1$
- 2. Unitary Evolution: $v \to Uv$
- 3. Measurement


$$x \text{ w.p. } | < e_x, v > |^2$$

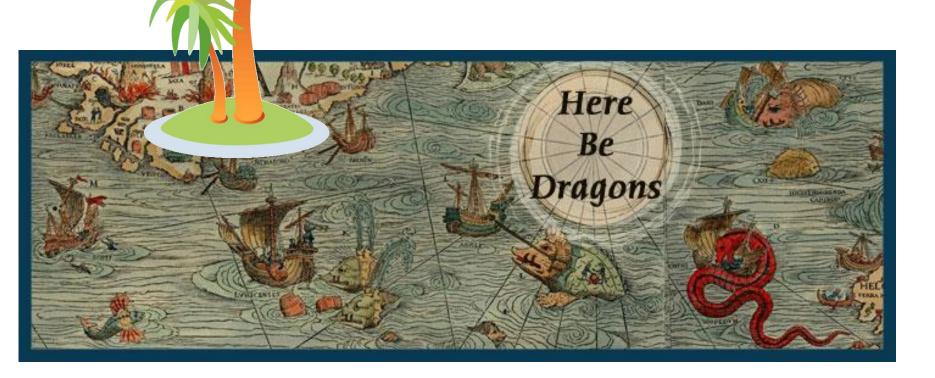
 $v \rightarrow e_x$

"Wavefunction Collapse"

Quantum Mechanics

What happens to the power quantum computing if we perturb these axioms?

- Non-unitary evolution [Abrams-Lloyd], [Aaronson]
- Measurement based on p-norm for p!=2 [Aaronson]



- Non-unitary evolution [Abrams-Lloyd], [Aaronson]
- Measurement based on p-norm for p!=2 [Aaronson]

- Non-unitary evolution [Abrams-L/ BOP -> PP Measurement based on p-norm for p: [Aaronson]

Challenge:

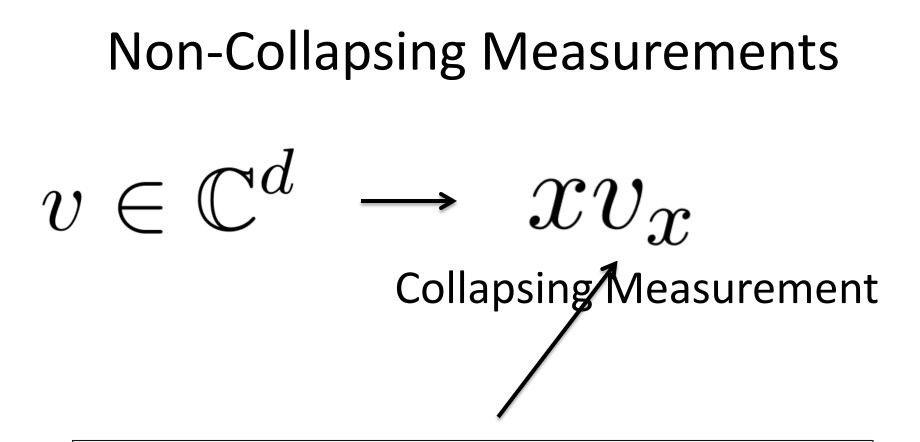
Is there *any* modification of QM that boosts the power of quantum computing to something SMALLER than PP?

> Yes (if you're careful)

Challenge:

Is there *any* modification of QM that boosts the power of quantum computing to something SMALLER than PP-NP?

> Yes (if you're careful)


Non-Collapsing Measurements $v \in \mathbb{C}^d$ Sample $x \text{ w.p. } | < e_x, v > |^2$ $v \to v$ "Wavefun Collapse"

Non-Collapsing Measurements

 $v \in \mathbb{C}^d$ x w.p. $| < e_x, v > |^2$

x w.p. $| < e_x, v > |^2$

v v

Can measure same collapsed state multiple times

Non-Collapsing Measurements

CQP

"Collapse-free Quantum Polynomial time"

naCQP

"non-adaptive CQP"

Quantum circuit must be non-adaptive to the non-collapsing measurement outcomes

Non-Collapsing Measurements

How powerful are these classes?

A: naCQP is "just above" BQP

Results

The class naCQP:

- Can solve SZK in poly-time
 - BQP cannot do this in black box manner
 - − \exists O such that naCQP^O \neq BQP^O
- Can search in O(N^1/3) time
- Search requires $\Omega(N^1/4)$ time
 - − \exists O such that NP^O $\not\subset$ naCQP^O
- In BPP^PP

Summary

Property	BQP	naCQP
Contains SZK	Unknown	Yes
Contains $SZK^O \ \forall O$	No	Yes
Upper Bound for Search	$O(N^{1/2})$	$\tilde{O}(N^{1/3})$
Lower Bound for Search	$\Omega(N^{1/2})$	$\Omega(N^{1/4})$
Upper Bound	AWPP	BPP ^{PP}

Summary

Property	BQP	naCQP	CQP
Contains SZK	Unknown	Yes	Yes
Contains $SZK^O \ \forall O$	No	Yes	Yes
Upper Bound for Search	$O(N^{1/2})$	$\tilde{O}(N^{1/3})$	$\tilde{O}(N^{1/3})$
Lower Bound for Search	$\Omega(N^{1/2})$	$\Omega(N^{1/4})$	$\Omega(1)$
Upper Bound	AWPP	B PP ^{PP}	BPP ^{PP}

Relation to Prior work

Aaronson '05: QC with Hidden Variable Theories "DQP"

Imagine a hidden variable theory is true, and you "see" hidden variables of your system as it evolves

Relation to Prior work

Property	BQP	naCQP	CQP	DQP
Contains SZK	Unknown	Yes	Yes	Yes
Contains $SZK^O \ \forall O$	No	Yes	Yes	Yes
Upper Bound for Search	$O(N^{1/2})$	$\tilde{O}(N^{1/3})$	$ ilde{O}(N^{1/3})$	$\tilde{O}(N^{1/3})$
Lower Bound for Search	$\Omega(N^{1/2})$	$\Omega(N^{1/4})$	$\Omega(1)$	Ω() 3)
Upper Bound	AWPP	BPPPP	BPP ^{PP}	ĔXP

Don't bet on this model just yet!

- FTL Signaling (if adaptive)
- No notion of query complexity
- Can clone if circuit adaptive
 Perfect cloning-> #P [Bao B. Jordan '15]

– Imperfect cloning -> ???

Open Problems

Property	BQP	naCQP	CQP
Contains SZK	Unknown	Yes	Yes
Contains $SZK^O \ \forall O$	No	Yes	Yes
Upper Bound for Search	$O(N^{1/2})$	$\tilde{O}(N^{1/3})$	$\tilde{O}(N^{1/3})$
Lower Bound for Search	$\Omega(N^{1/2})$	$\Omega(N^{1/4})$	$\Omega(1)$
Upper Bound	AWPP	BPPPP	BPP ^{PP}

Questions

2