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6.441 Transmission of Information April 27, 2006

Lecture 19
Lecturer: Madhu Sudan Scribe: Mehmet Akçakaya

1 Administrative Issues

• Project presentations in approximately 2 weeks from today.

• Report due in around 12 days.

2 Today

• Multiple Access Channels

• “Correlated Source Coding” a.k.a. Slepian-Wolf Theorem

3 Structure For Report/Presentation

• “Problem in English”

• Motivation - Why is this problem considered?

• Formal Model

• Theorem - Result - without going into the rigour at this point.
At this point we’ve surpassed the attention span of most people in the audience.

• How? - Construction and Analysis (for the few who are still listening)

4 Multiple Access Channels
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Figure 1: The Model

The multiple access channel is characterized by the input alphabets, ΩX1 and ΩX2 , the output
alphabet, ΩY , and the transition probabilities, pY |(X1,X2). We studied some specific channels in the last
lecture, e.g. Y = X1 + X2 + Z mod 2, where all the alphabets were Ω = {0, 1}.

Def (Operational): The rates (R1, R2) is achievable if ∃ encoding functions X1 : {1, . . . , 2nR1} →
(ΩX1)

n, X2 : {1, . . . , 2nR2} → (ΩX2)
n and decoding function D : (ΩY )n → {1, . . . , 2nR1}×{1, . . . , 2nR2}

such that Perror → 0 as n → ∞, meaning when the messages W1 ∈u {1, . . . , 2nR1} and W2 ∈u

{1, . . . , 2nR2} are chosen independently, and we have (W1,W2) → (X1(W1), X2(W2)) → Y → (Ŵ1, Ŵ2),
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then P[(W1,W2) 6= (Ŵ1, Ŵ2)] → 0 as n →∞.

Def (Basic Achievable): The rates (R1, R2) is basic achievable if ∃ distributions pX1 , pX2 with
(X1, X2) ∼ pX1pX2 , such that

R1 ≤ I(X1; Y |X2) (1)
R2 ≤ I(X2; Y |X2) (2)

R1 + R2 ≤ I(X1, X2; Y ) (3)

Thm(Capacity): (R1, R2) is achievable if and only if it lies in the convex hull of the basic achievable
rates (R̃1, R̃2).

Def (Convex Hull): Given (R(1)
1 , R

(1)
2 ), . . . , (R(k)

1 , R
(k)
2 ), the convex hull of these points are the points,

(R1, R2) that can be written as:

R1 =
k∑

i=1

λiR
(i)
1

R2 =
k∑

i=1

λiR
(i)
2

where {λ1, . . . , λk : λj ≥ 0,
∑

j λj = 1}. Examples can be seen in Fig. 2
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Figure 2: Examples of Convex Hulls: (a) with rates (b) in the plane

In other words, the theorem says (R1, R2) is achievable if and only if ∃ (R(1)
1 , R

(1)
2 ), . . . , (R(k)

1 , R
(k)
2 )

basic achievable rates such that R1 =
∑k

i=1 λiR
(i)
1 and R2 =

∑k
i=1 λiR

(i)
2 with {λ1, . . . , λk : λj ≥

0,
∑

j λj = 1}.

Proof :
Achievability : We need

• Basic achievable pairs are achievable (shown via random coding and typical set decoding)

• Convex combinations are achievable (follows from a time-sharing argument)

Let X1(W1)i ∼ pX1 i.i.d. over W1, i and X2(W2)i ∼ pX2 i.i.d. over W2, i. Decoding function D(Y )
outputs (W1,W2) if ∃!(W1,W2) such that (X1(W1), X2(W2), Y ) are jointly typical, else it outputs error.

When transmitting (W1,W2) a decoding error occurs when (W ′
1,W

′
2) 6= (W1,W2) or the decoder

outputs error:
- (X1(W1), X2(W2), Y ) is not jointly typical (by AEP the probability of this event → 0 as n →∞).
- For W ′

1 = W1, W ′
2 6= W2 (for fixed W1, W2), by joint AEP methods

P[(X1(W1), X2(W ′
2), Y ) is jointly typical] ≤ 2−nI(X2; (X1,Y ))
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Thus the transmission will work if R2 ≤ I(X2; (X1, Y )) = I(X2; X1)+I(X2; Y |X1) = I(X2; Y |X1).
The last step follows since X1 and X2 are independent.

- Similar cases (i.e. W ′
1 6= W1, W ′

2 = W2 and W ′
1 6= W1, W ′

2 6= W2) use similar inequalities.

Converse: Rigorous proof is omitted. But this follows from looking at the MAC in different ways:
Looking at the MAC (Fig. 1) as a classical channel, i.e. point-to-point, we get R1 + R2 ≤ I(X1, X2; Y ).

Alternatively we can look at it the other way (Fig. 3):
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Figure 3: MAC viewed another way

In this case the decoder is more powerful than in the regular MAC case, since X2 is available to it. We
can view this as a point-to-point channel with additive noise X2. Thus it follows reliable communication
is possible only when R1 ≤ I(X1; Y |X2). Since the decoder is more powerful than the MAC decoder,
this will be an upper bound on the rate of communication possible with MAC.

5 Correlated Sources

The basic model is given in Fig. 4. Note that what makes this problem interesting is the fact that
(X1, X2) are possibly dependent.
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Figure 4: Correlated Sources Model

Ex: Let Z0, Z1, Z2 be independent random variables with entropy H0,H1,H2 respectively. Let
X1 = (Z0, Z1) and X2 = (Z0, Z2) be the sources of interest. Note that H(X1) = H0 + H1 and
H(X2) = H0 + H2.

It’s easy to see that we can transmit at rates R1 = H1 and R2 = H0 + H2, if we push all of Z0

information through channel 2. Symmetrically we can transmit at R1 = H0 + H1 and R2 = H2, if we
push all of Z0 information through cahhnel 1.

It follows naturally via time-sharing that we can transmit at the R1 = αH0 + H1 and R2 =
(1 − α)H0 + H2, for 0 ≤ α ≤ 1, by proportionately transmitting Z0 information through channel 1
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and channel 2.

Based on this example, we can hope (conjecture) that rates (R1, R2) are achievable if R1 ≥ H(X1|X2),
R2 ≥ H(X2|X1) and R1 + R2 ≥ H(X1, X2). In fact this turns out to be the statement of our main
theorem.

Thm(Slepian-Wolf ): In the correlated sources model, rates (R1, R2) are achievable if and only if

R1 ≥ H(X1|X2) (4)
R2 ≥ H(X2|X1) (5)

R1 + R2 ≥ H(X1, X2) (6)

The idea is to transmit only the jointly typical sequences (X1, X2). This idea is illustrated in Fig. 5.
Note that H1 = H(X1), H2 = H(X2), I = I(X1;X2).
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Figure 5: Slepian-Wolf Encoding

From the figure, we can infer the following:

# dots per row =
# dots
# rows

=
2n(H1+H2−I)

2nH1
= 2n(H2−I) = 2nH(X2|X1) (7)

Similarly we’ll have # dots per column = 2n(H1−I) = 2nH(X1|X2). The random coding argument
goes as follows: We need to assign indices to each row, but we don’t have 2nH1 indices. Thus for each
row, we pick an index randomly from {1, . . . , 2nR1}. We do the same thing for the columns. Decoder
will get “boxes” defined by the indices. If there’s only one typical element in the box, then we output
that element. If there’s zero or more than one, then we declare an error. Formal proof will be given in
the next lecture.


