Lecture 18

Lecturer: Madhu Sudan
Scribe: Xiaomeng Shi

Review of Last Lecture

Gaussian Channel

- Noise $\sim \mathscr{N}\left(0, \sigma^{2}\right)$
- Input power constraint P
- Capacity achieving input is Gaussian with variance P
- Capacity: $\frac{1}{2} \log \left(1+\frac{P}{\sigma^{2}}\right)$.

Colored Gaussian Channels

- Blocks of n elements transmitted each time
- The additive noise $Z \in \mathbb{R}^{n}$ is multivariate gaussian with covariance matrix K_{Z} (noise with memory)
- Input signal $X \in \mathbb{R}^{n}$ has covariance matrix K_{X}
- Input power constraint is $n P$, ie. trace $\left(K_{X}\right) \leq n P$.
- Capacity (without feedback):

$$
C_{n}=\frac{1}{2} \log \frac{\left|K_{X}+K_{Z}\right|}{\left|K_{Z}\right|}
$$

- Unlike memoryless channels, in channels with memory, feedback may increase capacity by as much as $\frac{1}{2}$ bit. A colored Gaussian channel with feedback has capacity

$$
C_{F B, n}=\max _{K_{X}: \operatorname{tr}\left(K_{X}\right) \leq n P} \frac{1}{2} \log \frac{\left|K_{X+Z}\right|}{\left|K_{Z}\right|} \leq C_{n}+\frac{1}{2}
$$

Network Information Theory

So far, we have only considered single transmitter single receiver communication systems as shown on the left side of Figure 1. More generally, practical communication systems are more complex and may contain multiple senders and/or multiple receivers in various configurations. The second plot in Figure 1 illustrates such a system. The channel is not dedicated to one communication link, but shared between multiple users. Network information theory studies problems in such settings. There are many unsolved problems in network information theory, but some special networks are better understood than others. One example is the multiple access (MA) channel.

The Multiple Access Channel

The multiple access has many (m) senders and one receiver:
An example of MA channels is the ethernet. A MA channel can be charaterized by its input alphabet $\Omega_{X_{1}}, \Omega_{X_{2}}, \ldots, \Omega_{X_{m}}$, output alphabet Ω_{Y}, and probability transition function $P_{Y \mid X_{1}, \ldots, X_{m}}$. One question we would like to ask is, suppose the sources generate information at rate $R_{i}, i \in\{1, \ldots, m\}$. Is it feasible to transmit all messages correctly? Next we look at some simple examples of multiple access channels to study what rates are feasible.

Figure 1: Single Channel vs. Network

Figure 2: Multiple Access Channel

Examples of Multiple Access Channels

Parallel Channel: $Y=\left(X_{1}+Z_{1}, X_{2}+Z_{2}\right)$
Achievable Rates: $\quad R_{1} \leq C_{1}\left(X_{1} \rightarrow X_{1}+Z_{1}\right), \quad R_{2} \leq C_{2}\left(X_{2} \rightarrow X_{2}+Z_{2}\right)$

Figure 3: Parallel MA Channel

Binary Symmetric: $Y=X_{1}+X_{2}+Z(\bmod 2), X_{1}, X_{2} \in\{0,1\}, Z \sim \operatorname{Bern}(p)$

- Setting $X_{2}=0$ achieves $R_{1}=1-H(p)$
- Setting $X_{1}=0$ achieves $R_{2}=1-H(P)$
- Time sharing between these two points gives a straight line $R_{1}+R_{2}=1-H(p)$.

Binary Erasure MA Channel: $Y=X_{1}+X_{2}$
The binary erasure MA channel (first plot in Figure 5) adds its two inputs.
First, note:

Figure 4: Binary Symmetric MA Channel

- Set $X_{2}=0 \Rightarrow$ noiseless channel with rate $R_{1} \leq 1$.
- Set $X_{1}=0 \Rightarrow R_{2} \leq 1$
- Time sharing gives a triangular shaped capacity region as in the symmetric channel $Y=X_{1}+$ $X_{2}+Z(\bmod 2)$ case.

Can we do better?

The answer is yes:

- Assume $R_{1}=1$, ie., X_{1} is always transmitted reliably.
- Decode X_{2}, regarding X_{1} as noise (second plot in Figure 5), $X_{1} \sim \operatorname{Bern}\left(\frac{1}{2}\right)$.
- The MA channel looks like a BEC for X_{2} (last plot in Figure 5), $R_{2}=\frac{1}{2}$.

Figure 5: Binary Erasure MA Channel
$\therefore(1,0),\left(1, \frac{1}{2}\right),\left(\frac{1}{2}, 1\right),(0,1)$ are achievable rate pairs.
Time sharing then gives the following achievable rate region:

Figure 6: Achievable rate region of Binary Erasure MA Channel

Multiple Access Gaussian Channel

- $\operatorname{var}\left(X_{1}\right) \leq P_{1}, \operatorname{var}\left(X_{2}\right) \leq P_{2}, Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$

Figure 7: Multiple Access Gaussian Channel

- Set $X_{2}=0 \Rightarrow 0 \leq R_{1} \leq \frac{1}{2} \ln \left(1+\frac{P_{1}}{\sigma^{2}}\right)$
- Set $X_{1}=0 \Rightarrow 0 \leq R_{2} \leq \frac{1}{2} \ln \left(1+\frac{P_{2}}{\sigma^{2}}\right)$
- Decode one input regarding the other as noise $\Rightarrow R_{1}+R_{2} \leq \frac{1}{2} \ln \left(1+\frac{P_{1}+P_{2}}{\sigma^{2}}\right)$

The achievable region of a multiple access gaussian channel has the general shape same as Figure 6, except the vertices on the R_{1}, R_{2} axis are located at $\left(0, \frac{1}{2} \ln \left(1+\frac{P_{2}}{\sigma^{2}}\right)\right),\left(\frac{1}{2} \ln \left(1+\frac{P_{1}}{\sigma^{2}}\right), 0\right)$, and the slanted boundary line is $R_{1}+R_{2} \leq \frac{1}{2} \ln \left(1+\frac{P_{1}+P_{2}}{\sigma^{2}}\right)$.It can also be shown that instead of time-sharing, frequency division multiplexing can achieve the following capacity region:

Figure 8: MA Gaussian Channel: Rate pairs achieved by FDM

Achievable Rate Pairs

For a multiple access channel, what does it mean exactly to have a achievable rate pair $\left(R_{1}, R_{2}\right)$?

- $\left(R_{1}, R_{2}\right)$ is achievable if there exist

$$
\begin{array}{ll}
\text { Encoding function: } & X_{1}:\left\{1, \ldots, 2^{R_{1} n}\right\} \longrightarrow\left(\Omega_{X_{1}}\right)^{n} \\
& X_{2}:\left\{1, \ldots, 2^{R_{2} n}\right\} \longrightarrow\left(\Omega_{X_{2}}\right)^{n} \\
\text { Decoding function: } & Y:\left(\Omega_{Y}\right)^{n} \longrightarrow\left\{1, \ldots, 2^{R_{1} n}\right\} \times\left\{1, \ldots, 2^{R_{2} n}\right\}
\end{array}
$$

such that decoding error probability approaches 0 when transmitting the messages w_{1}, w_{2} independently generated (uniformly) on codebooks of size $2^{R_{1} n}$ and $2^{R_{2} n}$:

$$
w_{1} \in \text { uniformaly on }\left\{1, \ldots, 2^{R_{1} n}\right\} \quad w_{2} \in \text { uniformaly on }\left\{1, \ldots, 2^{R_{2} n}\right\}
$$

- As an illustration:

If $\left(\hat{w}_{1}, \hat{w}_{2}\right)=\left(w_{1}, w_{2}\right)$ with probability $\rightarrow 1$, the rate pair $\left(R_{1}, R_{2}\right)$ is achievable.

What rate pairs are achievable?
Theorem the rate pair $\left(\tilde{R}_{1}, \tilde{R}_{2}\right)$ is achievable iff it is in the convex hull of points $\left(R_{1}, R_{2}\right)$ such that there exist independent distributions $P_{X_{1}}, P_{X_{2}}$ such that

$$
\begin{aligned}
0 \leq R_{1} \leq I_{1} & =I(X ; Y \mid W) \\
0 \leq R_{2} \leq I_{2} & =I(W ; Y \mid X) \\
R_{1}+R_{2} \leq I_{3} & =I(X, W ; Y)
\end{aligned}
$$

