
6.441 Transmission of Information April 25, 2006

Lecture 18

Lecturer: Madhu Sudan Scribe: Xiaomeng Shi

Review of Last Lecture

Gaussian Channel

• Noise ∼ N (0, σ2)

• Input power constraint P

• Capacity achieving input is Gaussian with variance P

• Capacity: 1
2 log(1 + P

σ2 ).

Colored Gaussian Channels

• Blocks of n elements transmitted each time

• The additive noise Z ∈ R
n is multivariate gaussian with covariance matrix KZ (noise with memory)

• Input signal X ∈ R
n has covariance matrix KX

• Input power constraint is nP , ie. trace(KX) ≤ nP .

• Capacity (without feedback):

Cn =
1

2
log

|KX + KZ |

|KZ |

• Unlike memoryless channels, in channels with memory, feedback may increase capacity by as much
as 1

2 bit. A colored Gaussian channel with feedback has capacity

CFB,n = max
KX :tr(KX)≤nP

1

2
log

|KX+Z |

|KZ |
≤ Cn +

1

2

Network Information Theory

So far, we have only considered single transmitter single receiver communication systems as shown on
the left side of Figure 1. More generally, practical communication systems are more complex and may
contain multiple senders and/or multiple receivers in various configurations. The second plot in Figure 1
illustrates such a system. The channel is not dedicated to one communication link, but shared between
multiple users. Network information theory studies problems in such settings. There are many unsolved
problems in network information theory, but some special networks are better understood than others.
One example is the multiple access (MA) channel.

The Multiple Access Channel

The multiple access has many (m) senders and one receiver:
An example of MA channels is the ethernet. A MA channel can be charaterized by its input alphabet
ΩX1

, ΩX2
, . . . , ΩXm

, output alphabet ΩY , and probability transition function PY |X1,...,Xm
. One question

we would like to ask is, suppose the sources generate information at rate Ri, i ∈ {1, . . . , m}. Is it feasible
to transmit all messages correctly? Next we look at some simple examples of multiple access channels
to study what rates are feasible.
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Figure 1: Single Channel vs. Network
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Figure 2: Multiple Access Channel

Examples of Multiple Access Channels

Parallel Channel: Y = (X1 + Z1, X2 + Z2)

Achievable Rates: R1 ≤ C1(X1 → X1 + Z1) , R2 ≤ C2(X2 → X2 + Z2)

X1 X1 + Z1
- C1 -

X2 X2 + Z2
- C2 -
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Figure 3: Parallel MA Channel

Binary Symmetric: Y = X1 + X2 + Z(mod2), X1, X2 ∈ {0, 1}, Z ∼ Bern(p)

• Setting X2 = 0 achieves R1 = 1 − H(p)

• Setting X1 = 0 achieves R2 = 1 − H(P )

• Time sharing between these two points gives a straight line R1 + R2 = 1 − H(p).

Binary Erasure MA Channel: Y = X1 + X2

The binary erasure MA channel (first plot in Figure 5) adds its two inputs.
First, note:
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Y=X1+X2+Z (mod 2)
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Figure 4: Binary Symmetric MA Channel

• Set X2 = 0 ⇒ noiseless channel with rate R1 ≤ 1.

• Set X1 = 0 ⇒ R2 ≤ 1

• Time sharing gives a triangular shaped capacity region as in the symmetric channel Y = X1 +
X2 + Z(mod 2) case.

Can we do better?

The answer is yes:

• Assume R1 = 1, ie., X1 is always transmitted reliably.

• Decode X2, regarding X1 as noise (second plot in Figure 5), X1 ∼Bern(1
2 ).

• The MA channel looks like a BEC for X2 (last plot in Figure 5), R2 = 1
2 .

X2

X1

Y=X1+X2

X2

X1

Y
X2 0

1

Y0

1

1/2

1/2

?

Figure 5: Binary Erasure MA Channel

∴ (1, 0), (1, 1
2 ), (1

2 , 1), (0, 1) are achievable rate pairs.

Time sharing then gives the following achievable rate region:
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Figure 6: Achievable rate region of Binary Erasure MA Channel

Multiple Access Gaussian Channel

• var(X1) ≤ P1, var(X2) ≤ P2, Z ∼ N (0, σ2)

X1

X2

Z

Y

Figure 7: Multiple Access Gaussian Channel

• Set X2 = 0 ⇒ 0 ≤ R1 ≤ 1
2 ln(1 + P1

σ2 )

• Set X1 = 0 ⇒ 0 ≤ R2 ≤ 1
2 ln(1 + P2

σ2 )

• Decode one input regarding the other as noise ⇒ R1 + R2 ≤ 1
2 ln(1 + P1+P2

σ2 )

The achievable region of a multiple access gaussian channel has the general shape same as Figure 6,
except the vertices on the R1, R2 axis are located at

(

0, 1
2 ln(1 + P2

σ2 )
)

,
(

1
2 ln(1 + P1

σ2 ), 0
)

, and the slanted

boundary line is R1 +R2 ≤ 1
2 ln(1+ P1+P2

σ2 ).It can also be shown that instead of time-sharing, frequency
division multiplexing can achieve the following capacity region:

R1

R2

Figure 8: MA Gaussian Channel: Rate pairs achieved by FDM

Achievable Rate Pairs

For a multiple access channel, what does it mean exactly to have a achievable rate pair (R1, R2)?
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• (R1, R2) is achievable if there exist

Encoding function: X1 : {1, . . . , 2R1n} −→ (ΩX1
)n

X2 : {1, . . . , 2R2n} −→ (ΩX2
)n

Decoding function: Y : (ΩY )n −→ {1, . . . , 2R1n} × {1, . . . , 2R2n}

such that decoding error probability approaches 0 when transmitting the messages w1, w2 independently
generated (uniformly) on codebooks of size 2R1n and 2R2n:

w1 ∈ uniformaly on {1, . . . , 2R1n} w2 ∈ uniformaly on {1, . . . , 2R2n}

• As an illustration:

w1 ∈ {1, . . . , 2R1n}
X1(w1)- Enc1 -

w2 ∈ {1, . . . , 2R2n}
X2(w2)- Enc2 -

Channel -Y
Dec - ŵ1, ŵ2

If (ŵ1, ŵ2) = (w1, w2) with probability → 1, the rate pair (R1, R2) is achievable.

What rate pairs are achievable?

Theorem the rate pair (R̃1, R̃2) is achievable iff it is in the convex hull of points (R1, R2) such that
there exist independent distributions PX1

, PX2
such that

0 ≤ R1 ≤I1 = I(X ; Y |W )

0 ≤ R2 ≤I2 = I(W ; Y |X)

R1 + R2 ≤I3 = I(X, W ; Y )
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