6.441 Transmission of Information

Lecture 15
Lecturer: Madhu Sudan

April 11, 2006

Scribe: Brandon Roy

Today

e Differential entropy

Conditional entropy, Joint entropy, Mututal information...

e Channel capacity

Admin

e PS3 due tomorrow

e Office hours, Thursday afternoon (send email)

Motivations from last time

Recall the “6.441 channel”. We had input X € [—1, 1], noise W ~ Uniform[—e¢, €],

and output Y = X + W. We saw that

e If € =0, channel has infinite capacity.

e If € > 0, channel has finite capacity.

Differential Entropy

Beginning with differential entropy, introduced last time, let us analyze this
channel. We have X taking values in R with pdf f = fx. Recall that we are

working with X, the e-discretization of X. Then

h(X) = 251(1) {H(X.)+loge} = — /_OO fx(x)log(fx(xz))dx (if well behaved)

Differential entropy is similar to “discrete” entropy but it is important not
to draw too many conclusions from this similarity. For example, consider the

following:
e X ~ Uniform(a,b)
o h(X)=log(b—a)
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o h(aX) = h(X)+loglal
Note that for some choices of a, goes to 0o, or if b—a is very small, log(b—a) <

0. So caution: 3X s.t. h(X) < 0 which is never true with H(X) (when X is
discrete)

Definitions

We now proceed to develop concepts for continuous random variables along the
lines of those developed for discrete random variables. Consider a collection of
random variables X ... X, (real-valued) with pdf f(Xy,...,X,).

Joint Entropy

MX1,...,X,) = —/ fz1, ..., xn)log f(ay, ..., xn)dey ... doy,
X17 Xn

Conditional Entropy

Consider (X,Y") with joint distribution f(X,Y"), marginal distributions fx,fy,
and conditional distribution fxy (x|y). Then

Mxnz—Lymeﬁnwmwmwxwmwndy
. / [ e og fxiy (alydody

Divergence

The divergence between pdf’s f and g is

f@)
g() a

D(flls) = [ f(a)log
Furthermore,
D(fllg) >0 (usual proof by Jensen’s Inequality)
Applying this,
(,y) : D(fllfx, fr) 20 = h(X]Y) < h(X)

(Conditioning reduces entropy)

Note: when comparing entropies, any “loge” terms show up on both sides and
the comparison makes sense. Generally however, this is not true for the actual
“values”.

Mutual Information

I(X;Y) = h(X) — h(X]Y) > 0

If X and Y are “continuations” (opposite of discretizations) of discrete X, Y
then I(X;Y) =I(X; Y).
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Chain Rule
h(X,Y)=h(X)+h(Y|X)

Maximum entropy distributions

Uniform distribution

Among random variables X taking values in [0, 1] the differential entropy is
maximized by the X ~ Uniform(0,1).

Proof 1

Let X be any r.v. taking values in [0, 1].
Let Y be any r.v. with distribution Uniform(0, 1), independent of X.
Let Z=(X+Y) mod1

Then
fz is Uniform(0,1) (not hard to show)
fzx is Uniform(0, 1)

WY, Z) = h(X,Y)
= h(X) + h(Y)

h(Y,Z) < h(Y) + h(Z)

— h(X) < h(Z)

Proof 2 (Chung’s proof)

h(X):E[log ! }

p(X)
<log {E 1] (Jensen’s inequality)
p(X)
1
= log {/ p(x d:z:] S is the support set
: (z) o) ( )
= log | X|

which is the entropy of the uniform distribution.

So to conclude, among random variables taking values in [0,1] the differential
entropy is maximized by X ~ Uniform(0, 1).
Gaussian distribution

Furthermore, among (unbounded) random variables with mean 0 and variance
1, the differential entropy is maximized by X ~ Normal(0,1). In other words,
for any

X’ distributed arbitrarily with mean 0 and variance 1

X ~ Normal(0, 1)

D(X'||X) = h(X) — h(X") > 0

The Gaussian distribution has maximum entropy.
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Entropy of the Gaussian distribution

Let X ~ Normal(0,0?). Denote the pdf of X by ®(X) Note that log ®(z) =
a + bz?. Then

h(X) = —/<I>(a:) log ®(x)dx
:a/é(x)dm—&-b/xQ(I)(x)dx

=a+ bo?

AEP Theorem
If X;,..., X, iid. X then
1
——log f(X1,...,X,) — h(X)
n
in probability
Typical set
1
Al = {<xx> = log flans . ma) = h(X)| < }
n
Also, define the “volume” of a set S as
Vol(S) = /15(13:1 ...dx,
Then, Vé,e > 0, dng s.t. Vn > ng:
1. Pr(A")y>1-56
2. Vol(A™) < 2(h(X)+em
3. Vol(A™) > (1 — §)2(h(X)=on

Proofs

1:
Pr(Agn)) > 1-4. Follows from the LLN, applied to continuous random variables.

2:

1:/f(xh...,xn)dxl,...,dxn
Z/1Ag”)f(.’)3‘1,...,S(}n)dxl,...,d(En

> / lA(n)Q_(h(XH_E)ndxl, cey,dxy,

— 9= () o1 A
— Vol(A™) < 2h(X)+en
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1-6 S /lAgn)f(l‘l,...,xn)dﬂil,...,dl‘n

< / lA(n)Qi(h(X)ie)ndzlil, coydxy,

= Vol(AM) > (1 — §)2(nX)—on

Channel capacity

Now, back to the beginning. Recall our “6.441 channel”: Y = X +W. Suppose
2¢ = %, k € Z. We expected the “intuitive capacity” > log|1 + %J

Capacity

Define capacity as

C= rr}ax{I(X;Y)}

Note that the maximization is over all distributions subject to constraints. But
this is just a definition, let’s see if it makes sense for our channel.

max {1(X; Y)} = max {h(Y) — h(Y]X)}
= max {h(Y) = h(X + W|X)}
= max {h(Y) — h(W]X)}
= max {A(Y) — h(W)}

<log(2(1 +€)) — log(2e¢)
= log (l + 1)

Wish to prove: operational capacity < formal capacity. “Converse coding
theorems” We want to find upper bound on R. The sequence of actions in
transmission is

Choose z = (x1,...,2,) € set M of size 2"
Receiver gets y = (y1,..,Yn)
We guess & = (2,...,45).

So we have the Markov chain X — ¥ — X and use Fano’s Inequality: H(X|Y) <
1+ P.log | M|

I(X;Y) = H(X) — H(X|Y)
> H(X) — (1+log | M|P)
> log |M|(1 - P,) — 1
=nR(1-P,)—1

Note that above, we are using “discrete entropy” since X is “e-discretized”
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But we also have

I(X;Y) = h(Y) — h(Y|X) <

7

IN
Jl

and combining these two inequalities, we have

R<C
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