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Lecture 15
Lecturer: Madhu Sudan Scribe: Brandon Roy

Today

• Differential entropy

Conditional entropy, Joint entropy, Mututal information...

• Channel capacity

Admin

• PS3 due tomorrow

• Office hours, Thursday afternoon (send email)

Motivations from last time

Recall the “6.441 channel”. We had input X ∈ [−1, 1], noise W ∼ Uniform[−ε, ε],
and output Y = X + W . We saw that

• If ε = 0, channel has infinite capacity.

• If ε > 0, channel has finite capacity.

Differential Entropy

Beginning with differential entropy, introduced last time, let us analyze this
channel. We have X taking values in R with pdf f = fX . Recall that we are
working with Xε, the ε-discretization of X. Then

h(X) , lim
ε→0

{H(Xε) + log ε} = −
∫ ∞

−∞
fX(x) log(fX(x))dx (if well behaved)

Differential entropy is similar to “discrete” entropy but it is important not
to draw too many conclusions from this similarity. For example, consider the
following:

• X ∼ Uniform(a, b)

• h(X) = log(b− a)
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• h(aX) = h(X) + log |a|

Note that for some choices of a, goes to∞, or if b−a is very small, log(b−a) <
0. So caution: ∃X s.t. h(X) < 0 which is never true with H(X) (when X is
discrete)

Definitions

We now proceed to develop concepts for continuous random variables along the
lines of those developed for discrete random variables. Consider a collection of
random variables X1 . . . Xn (real-valued) with pdf f(X1, . . . , Xn).

Joint Entropy

h(X1, . . . , Xn) = −
∫

X1,...,Xn

f(x1, . . . , xn) log f(x1, . . . , xn)dx1 . . . dxn

Conditional Entropy

Consider (X, Y ) with joint distribution f(X, Y ), marginal distributions fX ,fY ,
and conditional distribution fX|Y (x|y). Then

h(X|Y ) = −
∫

Y

fY (y)
[∫

X

fX|Y (x|y) log fX|Y (x|y)dx

]
dy

= −
∫ ∫

X,Y

f(x, y) log fX|Y (x|y)dxdy

Divergence

The divergence between pdf’s f and g is

D(f ||g) =
∫

X

f(x) log
f(x)
g(x)

dx

Furthermore,

D(f ||g) ≥ 0 (usual proof by Jensen’s Inequality)

Applying this,

(x, y) : D(f ||fX , fY ) ≥ 0 =⇒ h(X|Y ) ≤ h(X)

(Conditioning reduces entropy)
Note: when comparing entropies, any “log ε” terms show up on both sides and
the comparison makes sense. Generally however, this is not true for the actual
“values”.

Mutual Information

I(X;Y ) = h(X)− h(X|Y ) ≥ 0

If X and Y are “continuations” (opposite of discretizations) of discrete X̃, Ỹ
then I(X;Y ) = I(X̃; Ỹ ).
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Chain Rule

h(X, Y ) = h(X) + h(Y |X)

Maximum entropy distributions

Uniform distribution

Among random variables X taking values in [0, 1] the differential entropy is
maximized by the X ∼ Uniform(0, 1).

Proof 1

Let X be any r.v. taking values in [0, 1].
Let Y be any r.v. with distribution Uniform(0, 1), independent of X.
Let Z = (X + Y ) mod 1

Then
fZ is Uniform(0, 1) (not hard to show)
fZ|X is Uniform(0, 1)

h(Y, Z) = h(X, Y )
= h(X) + h(Y )

h(Y, Z) ≤ h(Y ) + h(Z)

=⇒ h(X) ≤ h(Z)

Proof 2 (Chung’s proof)

h(X) = E

[
log

1
p(X)

]
≤ log

[
E

1
p(X)

]
(Jensen’s inequality)

= log
[∫

S

p(x)
1

p(x)
dx

]
(S is the support set)

= log |X|

which is the entropy of the uniform distribution.

So to conclude, among random variables taking values in [0, 1] the differential
entropy is maximized by X ∼ Uniform(0, 1).

Gaussian distribution

Furthermore, among (unbounded) random variables with mean 0 and variance
1, the differential entropy is maximized by X ∼ Normal(0, 1). In other words,
for any

X ′ distributed arbitrarily with mean 0 and variance 1
X ∼ Normal(0, 1)

D(X ′||X) = h(X)− h(X ′) ≥ 0

The Gaussian distribution has maximum entropy.
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Entropy of the Gaussian distribution

Let X ∼ Normal(0, σ2). Denote the pdf of X by Φ(X) Note that log Φ(x) =
a + bx2. Then

h(X) = −
∫

Φ(x) log Φ(x)dx

= a

∫
Φ(x)dx + b

∫
x2Φ(x)dx

= a + bσ2

AEP Theorem

If X1, . . . , Xn iid. X then

− 1
n

log f(X1, . . . , Xn) → h(X)

in probability

Typical set

A(n)
ε =

{
(x1, . . . , xn) :

∣∣∣− 1
n

log f(x1, . . . , xn)− h(X)
∣∣∣ ≤ ε

}
Also, define the “volume” of a set S as

V ol(S) =
∫

1Sdx1 . . . dxn

Then, ∀δ, ε > 0, ∃n0 s.t. ∀n ≥ n0:

1. Pr(A(n)
ε ) ≥ 1− δ

2. V ol(A(n)
ε ) ≤ 2(h(X)+ε)n

3. V ol(A(n)
ε ) ≥ (1− δ)2(h(X)−ε)n

Proofs

1:
Pr(A(n)

ε ) ≥ 1−δ. Follows from the LLN, applied to continuous random variables.

2:

1 =
∫

f(x1, . . . , xn)dx1, . . . , dxn

≥
∫

1
A

(n)
ε

f(x1, . . . , xn)dx1, . . . , dxn

≥
∫

1
A

(n)
ε

2−(h(X)+ε)ndx1, . . . , dxn

= 2−(h(X)+ε)n · V ol(A(n)
ε )

=⇒ V ol(A(n)
ε ) ≤ 2(h(X)+ε)n
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3:

1− δ ≤
∫

1
A

(n)
ε

f(x1, . . . , xn)dx1, . . . , dxn

≤
∫

1
A

(n)
ε

2−(h(X)−ε)ndx1, . . . , dxn

=⇒ V ol(A(n)
ε ) ≥ (1− δ)2(h(X)−ε)n

Channel capacity

Now, back to the beginning. Recall our “6.441 channel”: Y = X +W . Suppose
2ε = 1

k , k ∈ Z. We expected the “intuitive capacity” ≥ logb1 + 2
2εc.

Capacity

Define capacity as
C = max

fX

{I(X;Y )}

Note that the maximization is over all distributions subject to constraints. But
this is just a definition, let’s see if it makes sense for our channel.

max
fX

{I(X;Y )} = max
fX

{h(Y )− h(Y |X)}

= max
fX

{h(Y )− h(X + W |X)}

= max
fX

{h(Y )− h(W |X)}

= max
fX

{h(Y )− h(W )}

≤ log(2(1 + ε))− log(2ε)

= log
(

1
ε

+ 1
)

Wish to prove: operational capacity ≤ formal capacity. “Converse coding
theorems” We want to find upper bound on R. The sequence of actions in
transmission is

Choose x = (x1, . . . , xn) ∈ set M of size 2nR

Receiver gets y = (y1, . . . , yn)
We guess x̂ = (x̂1, . . . , x̂n).

So we have the Markov chain X → Y → X̂ and use Fano’s Inequality: H(X|Y ) ≤
1 + Pe log |M |

I(X;Y ) = H(X)−H(X|Y )
≥ H(X)− (1 + log |M |Pe)
≥ log |M |(1− Pe)− 1
= nR(1− Pe)− 1

Note that above, we are using “discrete entropy” since X is “ε-discretized”
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But we also have

I(X;Y ) = h(Y )− h(Y |X) ≤
n∑

i=1

h(yi)− h(yi|xi) =
n∑

i=1

I(xi; yi)

≤ nC

and combining these two inequalities, we have

R ≤ C
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