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1. Today’s outline 

  

a. Joint Typicality 

b. Channel Coding Theorem for DMC 

c. Achievability of { });(max
)(

yxICR
xp

=<  

d. Nonachievability of CR >  

 

 

2. Definitions 

  

• { { { ),,( :DMC
set finite

matrixy probabilit transition

/

set finite

YPX xy  

• N
th
 extension of DMC: ),,(

/

n

xy

n YPX nn . Check for properties of DMC: 

o memoryless iii YXX →→⇔ −1  

o no feedback iii XXXYY →→⇔ −− 1111 ,...,,...  

o memoryless + no feedback iiii YXYYXX →→⇔ −− ),...,,,...( 1111 ∏
=

=⇔
n

i

XYXY ii
nn PP

1

//
 

• (M,n) code 

o message index set { }M,...,1  

o encoding function 
nXWf →:  

o codebook: 
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o decoding function WYg n →:  

o For M uniformly distributed messages, Rate = bits/channel uses = nM /)(log2 . If we fix 

rate 
nRMnMR 2/)(log2 =⇒= . 

• Probability of error conditioned on i
th
 message sent [ ])(/)(Pr ifXiYg nn

i =≠=λ  
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• Maximum probability of error: { }i
i

n λλ max)( =  

• Arithmetic average probability of error: ∑
=

=
M

i

i

n

e
M

P
1

)( 1
λ . Obviously, 

)()( nn

eP λ≤  

• A rate is said to be achievable if there exists a sequence of  ( )nnR ,2  codes such that 
)(nλ  tends to 

zero as n increases. 

• The capacity of a DMC is the supremum of all the achievable rates. 

 

 

3. Jointly typical sequences 

 

Recall that a random vector 
nX  with i.i.d. components according to xp  is a typical sequence if 

))(())(( 2)(2 εε −−+− ≤=≤ XHnnnXHn xXp . We extend the notion of typical sequences to jointly typical 

sequences. We have two random vectors 
nX  and 

nY  with i.i.d. components according to xp and yp  

respectively. In addition, yxii pYX ,~),( . Hence, ∏
=

=====
n

i

iiii

nnnn yYxXpyYxXp
1

),(),( .  

 

3.1. Definition: Jointly typical sequences 

The set 
nAε of jointly typical sequences ),( nn yx  is defined as: 
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where 

∏
=

=====
n

i

iiii

nnnn yYxXpyYxXp
1

),(),(  

 

3.2. Theorem: Joint AEP 

Let  ),( nn YX  be a random sequence with i.i.d. pairs yxii pYX ,~),(  and 

∏
=

=====
n

i

iiii

nnnn yYxXpyYxXp
1

),(),( . Then the following are true: 

1. ( )( ) . as 1,Pr ∞→→∈ nAYX nnn

ε  

2. 
)),((2 ε

ε
+≤ YXHnnA  
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3. If 
nX

~
 , 

nY
~

 are independent with i.i.d. components and xi pX ~
~

 and yi pY ~
~

 then for sufficient 

large n: ( )( ) ( )( ) )3);(()3);(( 2)1(
~

,
~

Pr  and  2
~

,
~

Pr ε
ε

ε
ε ε +−−− −≥∈≤∈ YXInnnnYXInnnn AYXAYX  

 

Proof:  

1 and 2 are derived from 
)),(()),(( 2),(2 εε −−+− ≤==≤ YXHnnnnnYXHn yYxXp . We have shown a 

similar proof when we talked about typical sets. Here we give the proof for 3: 

( )( ) )3);(())(())(())/((
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2222)()(
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Comments: Not all pairs of typical 
nX  and typical 

nY  are jointly typical since there exist approximately 

);(2 YXnH
 typical pairs. Each typical 

nX  induces about 
)/(2 XYnH
possible 

nY  typical sequences, all of them 

equally likely. If we want to ensure that two different codewords will induce two disjoint sets of typical 
nY  

possible sequences then the total number of 
)(2 YnH
 typical 

nY  must be divided into 
);())/()(( 22 YXnIXYHYHn =−
 

disjoint sets. Hence, we are allowed to send at most 
);(2 YXnI
 different typical 

nX  sequences. 

 

 

4. Channel Coding for the DMC 

 

4.1. The Channel Coding Theorem 

All rates below capacity C are achievable, namely, for every R<C there exists a sequence of ( )nnR ,2  codes 

with 0)(
∞→

→
n

nλ . Conversely, any sequence of ( )nnR ,2  codes with 0)(
∞→

→
n

nλ  must have R ≤ C. 

 

Achievability: 

Note that 
)(nλ  is not easy to deal because it involves maximization which is a nonlinear operation while 

)(n

eP  is something we can compute. But 
)()( nn

eP λ≤ , so let’s try to generate a code ℵ  (MxN matrix of 

symbols) for which when 0)(
∞→

ℵ →
n

n

eP  and show that there is a subcode ℵ′  of ℵ  (TxN submatrix of 

symbols, T<M) such that 0)(
∞→

ℵ′ →
n

nλ . This is sufficient if 
)()( n

e

n PK ℵℵ′ ⋅≤λ . We do the following trick. We 

generate a code of 2M codewords instead of M. Note that the new rate is 

M

n

MM RnRnMR
∞→

→+== /1/)2(log22 . It is easy to show that 
)()(

2
2 n

M

n

MeP λ≥ . The proof goes as follows: 
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assume that M221 ... λλλ ≤≤≤ . If this does not hold you can always swap the codewords in the codebook 

such that the first row has the smallest probability or error, the second row the second smallest probability 

of error, etc. Hence: 
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Thus, using the code ℵ  and showing 0)(
∞→

ℵ →
n

n

eP  it is equivalent as if we were using the subcode ℵ′  and 

showing 0)(
∞→

ℵ′ →
n

nλ . In practice, we can throw away the worst M codewords and left with the rest M 

codewords (this is also called the expurgated code ℵ′  which has rate nR M /12 − ). 

 

Let’s calculate the average probability of error averaged over all codewords in the codebook and averaged 

over all codebooks: 

{ } { } { } { }∑∑∑ ∑∑
= ℵℵ =ℵ

ℵℵ=ℵℵ=ℵℵ=
nRnR

w

wnR
w

wnR

n

ePerrorP
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1

)( )(P
2

1
)(

2

1
P)(P λλ  

by symmetry of the code construction, { }errorP  does not depend on the particular message so: 

{ } { } { }1/)(P 1 ==ℵℵ=∑
ℵ

WerrorPerrorP λ  

So we calculate the average probability of error based on the scenario that the first codeword was 

transmitted. An error occurs if the following events happen: 

1. { } nRnnn

i iAYiXE 2,...,2  ,)),(( )( =∈= ε  

2. { })(

1 )),1(( nnnc AYXE ε∉=  

Thus,  
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To finish the proof, we find the capacity achieving input distribution to generate the codebooks so 

);( YXIC = .  Hence, we can drive the average probability of error as close to zero as desired as long as 

CR <  for sufficient large n. 

 

Converse: 

Let W to be uniformly distributed over the set { }nR2,...,2,1 .  We have: 

));(()/();()/()(
)(

nnn
YWXW

nn YWXIYWHYWIYWHWHnR

nn

+≤+==
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If 0)(
∞→

→
n

nλ  then 0)(
∞→

→
n

n

eP . Since ( ))()( nn

e YgWPP ≠=  by Fano’s inequality we have: 

nRPYWH nn )(1)/( ε+≤  

Moreover,  

nCYXIYWXI
n

i

ii

DMC
nn ≤≤ ∑

=1

);(  ));((  

thus, 

C
n

RPRnCnRPYWXIYWHnR nnnnn ++≤⇒++≤+≤
1

1));(()/( )()(

εε  

so as ∞→n  the first two terms go to 0 and we get the desired result: CR ≤  

 

4.2. Example 

When may we encode above capacity and have zero probability error?  

 

Assume the BSC with ε = 0. Obviously C = 1 bit/channel use. Consider the channel code 

 

1 � 0 p=1/4 

2 � 1   p=1/4 

3 � 00  p=1/4 

4 � 01 p=1/4 

 

then 1
3

4

2

1
1

2

1
2

4log2 >=
⋅+⋅

=R . Hence, we can have R > C and no errors at the receiver but note that 

the channel is not noisy anymore so the coding theorem does not hold anymore. Also note the code 

is not uniquely decodable. 

 

 

 


