
6.441 Spring 2006 9-1

6.441 Transmission of Information Mar 9, 2005

Lecture 9
Lecturer: Madhu Sudan Scribe: Jin Woo Shin

Today we are going to continue talking about data compression; You can get more detail information
of Lempel-Ziv algorithm at the lecture note of Gallager 2/7/1994 dated.

1 Today’s topics

• Markov source

• Universal coding algorithm

• Lempel-Ziv algorithm

2 Markov source

Let’s assume that there is a Markov process which has a finite state S and whose state transition
matrix P is fixed. Also there is a function of output sequence X that only depends on current and
one step before states. The sequence of S goes to produce the random source X and we can only
observe the output sequence X ′s. This process is called as Markov source or Markovian process.
The detailed description is as following:

S = {1, 2, . . . , n}
P = {Pij}i,j∈S = Prob. chain goes to state j / state i(given) in one step
f = S × S → {0, 1} (output function)

• (y0, . . . , yt) ∈ St s.t. y0 ∈ S : initial state

• Pr[yt = j|yt−1 = i yt−1 · · · y0] = Pij

• (x0, . . . , xt) ∈X s.t. xt = f(yt−1, yt)

2.1 Notations for Markov source

There are several prime notations for Markov source.

• Source is reducible if ∃i, j ∈ S with no path of prob from i to j, e.g.

A

B

no way to go from A to B

6.441 Spring 2006 9-2

• Source is L periodic if ∀C paths from i back to i has length divisible by L

A

B

D

C

chain with 4 period

We know where the state is after 4 steps.

• Source is irreducible if it is not reducible and aperiodic(:= if it is not L periodic for any
L ≥2

”irreducible + aperiodic” ⇔ ergodic

We don’t get into the general concept of ergodic process. However, above relationship will help us
set up what we want to do.

2.2 Entropy rate

We have already learned the definition of Entropy rate H(X) as following:

H(X) := lim
t→∞

H(Xt|Xt−1, . . . , X1)

This limit does exist in regular markov chain. However, in the case of markov source,it may not.
{Yi} definitely follow markov chain and Yt|Yt−1 is fixed for ∀Yi, but Xi does not construct markov
chain because Xt−1 does not contain all of past information of Xi.

Example

S0 S1

1/2, 1

2/3, 1

1/3, 0 1/2, 0

In the above Markov source, the observation 0 or 1 does not give us perfect information of states. We
can also notice that more past sequence (0, 1, · · · , 1) gives us more information of states. Generally,
it is very hard to calculate entropy rate in this type of problems because whenever we partially
observe markov chain, we cannot find correct start state.

[Typical Set Theorem for ergodic Markov source X]

∀t, ∃Tt ∈ {0, 1}t

• limt→∞
log|Tt|

t → H(X)

• For ∀(x1, . . . , xt) ∈ Tt ,
Pr(X1,...,Xt)[(X1, . . . , Xt) = (x1, . . . , xt)] ≈ 2−H(X)(1±ε)t

• limt→∞ Pr(X1,...,Xt)[(X1, . . . , Xt) ∈ Tt]→ 1

6.441 Spring 2006 9-3

With this theorem, we can achieve the fact that 1) in typical set, probability distribution of {Xi}
is almost uniform distribution and each prob. is ≈ 2−H(X)(1±ε)t, 2) we don’t need to think out of Tt.

Example Let’s think of {Xi} i.i.d and satisfies following property.

Xi =

{
0 , with probability 0.9,
1 , with probability 0.1.

Then, 1) the most probable sequence (X1, . . . , Xt) is all 0 sequence, but this sequence is not
contained in the typical set. 2) The typical set is roughly uniformly distributed large domain.
3) The size of typical set Tt is virtually lower bound of compression.

3 Universal Encoding

As we studied in the last lecture, preview the universal encoding. Huffman coding compresses and
i.i.d source with a known distribution to its entropy entropy limit. But, what compression can be
achieved if it is an unknown distribution? Universal Encoding starts from this idea, and our goal
is finding such an uniquely decodable coding algorithm C that satisfies the following property.

∀X , lim
t→∞

EXi∼X [|C(X1, X2, . . . , Xt)|]
t

= H(X)

I will introduce the ’shabby’ encoding as such an example.

3.1 Shabby Algorithm

x1 x2 ... xL xt

 L L L

 y1 y2 yt'=t/L

• At first, divide the data (x1, x2, . . . , xt) into L sections, and each section is denoted by yi ∈
{0, 1}L, 1 ≤ i ≤ t′ = t/L.

• As a first step of encoding, build a dictionary of frequent strings in {0, 1}L. The frequency
constant k is what we will find later, and I(w) indicates the index of w in the dictionary. This
step can be formulated as follows,

count← 0

For w ∈ {0, 1}L do
if |j|yj = w| ≥ k, then Zw ← 1, count ← count + 1, I(w)← count
else Zw ← 0

• The second step of encoding is the real encoding step using the dictionary we built in the
previous step. If the section data yj is in the dictionary, encode it as the index of the dictionary.
Otherwise, the encoded data is just the plain data. Also, we add one bit to the encoded data

6.441 Spring 2006 9-4

to indicate its type. This step can be formulated as follows,

For j = 1 to t′ do
w ← yj

if Zw = 1, then uj ← (1, I(w))
else uj ← (0, w)

• Therefore, the encoded data is consisted of the dictionary((Zw)w∈{0,1}L) and u1, u2, . . . , ut′ .

Now, the remaining problem is to determine L, k to minimize the encoded data’s length. The
following theorem tells about that.

Theorem 1 If k = t
L2−H(X)(1+ε)L,

lim
ε→0

lim
L→∞

lim
t→∞

E[|ShabbyL,k(X1, X2, . . . , Xt|]
t

→ H(X)

Proof Idea The size of dictionary({Zw}) is at most 2L, because there are 2L w’s. And, the AEP
says the size of the dictionary is bounded by 2H(X)(1+ε)L. Therefore, if Zuj

= 1, the length of uj

is H(X)(1 + ε)L + 1, and the total length of uj , where Zuj = 1 is t
L (H(X)(1 + ε)L + 1). Also,

from AEP, we can know the total length of uj , where Zuj = 0 is δ t
L (L + 1). In sum, the length of

the encoded data is at most 2l + t
L (H(X)(1 + ε)L + 1) + δ t

L (L + 1). The dominant term of them
is t

L (H(X)(1 + ε)L + 1), and we can lead the result.

As we see the above theorem, this encoding scheme is not elegant and practical because it is not
easy to find L, k from an unknown distribution.

3.2 LEMPEL-ZIV CODING

We now describe another more elegant and simple scheme for universal encoding. The algorithm
defines simply as follows,

• (Parsing) Parse the source data (x1, x2, . . . , xt) into t′ sections (y1, y2, . . . , yt′) such that

∀j, ∀j′ < j, yj 6= yj′

∀j, ∃j′ < j, yj = yj′b (b ∈ {0, 1})

• (Encoding) Encode each section yj (1 ≤ j ≤ t′) to (j′, b).

We just touch the overview of analysis that this encoding scheme is a good compressor. There are
two ideas to prove the statement.

• Lempel Ziv compression is no worse than any finite-state compressor.

∀S lim
t→∞

{
LZ(comp.)
Cs(comp.)

}
≤ 1

• Finite state compressors are not too bad.

Sketch of Proof

1. What is finite state machine?

6.441 Spring 2006 9-5

X1 Xt

Finite State Machine

y
1

y
t

Read head left to right

Write head left to right


S = {1, . . . , s}
δ(s,Xi)→ s′

W (s,Xi)→ y ∈ {0, 1}∗ (we can write nothing or many strings at a time.)

Finite state machine consists of finite number states. In each state, machine reads the input
sequences {Xi}, and based on the current state and input value, it determines next state and
output sequences {Yi}. All procedures in finite state machine are deterministic.

2. The finite state compression is not too bad. For example, ’Shabby’ is ≈ 2L state compressor,
and we checked in the previous section that it is not too bad.

3. Lemple Ziv is no worse than any finite state compressor.

Let c(X1, . . . , Xt) be the maximum value of t′ such that ∃ y1, y2, . . . , yt′ , X1X2 . . . Xt =
y1y2 . . . yt′ and yi are all distinct. In other words, it can be interpreted as the largest number
of distinct strings into which X1X2 . . . Xt can be parsed.

Claim 2 if c(X1, . . . , Xt) = t′ then t ≥ t′ log
(

t′

4

)
Claim 3 if c(X1, . . . , Xt) = t′ then for every S state compressor Cs,

|Cs(X1, . . . , Xt)| ≥ t′log

(
t′

4S2

)
(by the Jensen’s inequality)

Claim 4 if c(X1, . . . , Xt) = t′ then

|CLZ(X1, . . . , Xt)| ≤ t′log (t′(1 + o(1)))

Lempel-Ziv algorithm is practically very elegant, however analyzing it is very messy and complicate.

