6.441 Transmission of Information

March 7, 2005

Scribe: Anna Lee

Lecture 8

Lecturer: Madhu Sudan

Today

• Quality of Huffman Codes

• Universal Coding

• Lempel Ziv Algorithm

Admin

• PS2 due tomorrow

• PS1 will be handed back Thursday

Review

 $C: \Omega_{\{1,\dots,n\}} \to D^*_{\text{often}D=\{0,1\}}$

• Kraft's Inequality: $l_i = |(C_i)|$, then $\sum_{i=1}^n D^{-l_i} \leq 1$ if code is uniquely decodable.

• if p_i is prob. of element i, we would like to minimize $E[l] = \sum_{i=1}^{n} p_i l_i$.

• Entropy inequality: $\frac{H(p_1, \dots, p_n)}{\log D} \le E[L]$

1. Kraft's inequality is tight if l_i, \ldots, l_n satisfy $\sum_{i=1}^n D^{-l_i} \leq 1$ then $\exists C : \{i, \ldots, n\} \to D^*$ s.t. $|C(i)| = l_i$.

2. Shannon Coding Method

• $l_i = \lceil \log_D \frac{1}{p_i} \rceil \le \log_D \frac{1}{p_i} + 1 \Rightarrow E[L] \le \frac{H(X)}{\log D} + 1$

• should use to compress $\bar{X} = (X_1, \dots, X_k)$ where $k \to \infty, X_1, \dots, X_k$ i.i.d. $\sim X$

• (from here, D=2).

• $kH(X) = H(\bar{X}) \le E[\text{length compressing}\bar{X}] \le H(\bar{X}) + 1 = kH(X) + 1.$ $\to \text{loss becomes } \frac{1}{k} \text{ per element.}$

Huffman Coding

 \bullet "optimal" prefix code for variable X

• $C_{\text{Huffman}}: \{i, \dots, n\} \to \{0, 1\}^*$

• Huffman code (p_1, \ldots, p_n)

- if $n \leq 2, \dots$

- sort so that $p_1 \geq p_2 \geq \cdots \geq p_n$

$$-C' \leftarrow \text{Huffman Code}(p_1, p_2, \dots, p_{n-2}, p_{n-1} + p_n)$$

$$C[i] = \begin{cases} C'[i] & \text{, if } i \le n-2, \\ C'[n-1]0 & \text{, if } i = n-1, \\ C'[n-1]1 & \text{, if } i = n. \end{cases}$$

Today

Claim: For any prefix-free code $C:\{1,\ldots,n\} \to \{0,1\}^*$ it is the case that $\sum_{i=1}^n p_i |C(i)| \ge \sum_{i=1}^n p_i |C_{\text{Huff}}(i)|$.

Prefix free:

- All codewords are leaves.
- \bullet in optimal tree, can always assume $p_i < p_j \Rightarrow l_i \leq l_j$
- in optimal tree, no nodes have only one child
- $\exists 2$ leaves at lowest level with the same parent and with the two lowest probabilities.
- $E[\operatorname{length}(p_1, \dots, p_n)] \ge E[\operatorname{length}(p_1, \dots, p_{n-2}, p_{n-1} + p_n)] + (p_{n-1} + p_n)1$

 $X_1, X_2, \ldots, X_t, X_i$ i.i.d. $\sim X$ then compressing with Huffman/Shannan is more realistic.

Markovian Source (Hidden Markov Chain or Ergodic Source)

- Finite State Space $\{1, \ldots, n\}$
- Transition prob. matrix $\{p_{ij}\}_{i,j=1,\ldots,n}$
- $\bullet \ (i,j) \to b_{ij} \in \{0,1\}$
- Build for English, but what happens if source switches to French?

Universal Coding

Goal: compress information produced by a Markovian Source

- must be efficient
- has no prior knowledge of source

Consider $X \in \{1, \ldots, n\}$, $p(X = i) = p_i, X_1, \ldots, X_t$ i.i.d. $\sim X$. Compress $(\bar{X} = (X_1, \ldots, X_t))$

- let t_i be the number of occurrences of i in \bar{X}
- send (t_1,\ldots,t_n)
- which of $\binom{t}{t_1...t_n}$ possible sequences was seen
- amount of communication \rightsquigarrow negligible +tH(X)

AEP for Ergodic Markovian Source

if (X_1, \ldots, X_L) elements drawn from finite Markovian (ergodic) source then

$$\frac{-\log \Pr(p(X_1,\dots,X_L))}{L} \to H(X) \qquad \qquad \text{entropy rate of process.}$$

With probability
$$1 - \delta$$
, $2^{-H(X)L(1+\epsilon)} \le p(X_1, \dots, X_L) \le 2^{-H(X)L(1-\epsilon)}$

Divide t-length sequences into blocks of length L.

Compression idea (L, k)

- $X_1, \dots, X_t \leadsto Y_1, \dots, Y_{\frac{t}{L}}, Y_i \in \{0, 1\}^L, t' = \frac{t}{L}$
- (1) typical set: $w \in \{0,1\}^L$ s.t. w appears at least k times, send $w \leq 2^L$ bits
- (2) for each block:
 - "0" (typical) and index into set of elements sent in step $1 \approx H(X)(L+1)t/L$ bits
 - "1" (nontypical) and $w \in \{0,1\}^L \approx \delta(L+1)t/L$ bits
- as $t \to \infty$, $2^L + H(X)(L+1)\frac{t}{L} + \delta(L+1)\frac{t}{L} \approx H(X)t$.