February 23, 2006

Lecture 5

 $Lecturer:\ Madhu\ Sudan$

Scribe: Hyun Sung Chang

1 Introduction

1.1 Today's Topic

- Markov chains/processes
- Entropy rate of Markov chain

1.2 Motivating Example

Example 1: Let us start by considering the following example. What are the rates of X and Y?

2 Stochastic Process

A stochastic process can be viewed as an infinite sequence of random variables, e.g., X_{-n} , X_{-n+1} , \cdots , X_0 , X_1 , X_2 , \cdots , X_n , \cdots , whose distribution may be expressed by

$$\Pr[X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n] \sim p(x_1, \cdots, x_n).$$

There are some meaningful and restricted classes of stochastic process.

Definition 1 (Stationary Process) $\langle X_n \rangle_n$ is a stationary process if

$$\Pr[X_1 = x_1, \cdots, X_n = x_n] = \Pr[\underbrace{X_{1+l} = x_1, \cdots, X_{n+l} = x_n}_{\text{time shift by } l}], \ \forall n, l, x_1, \cdots, x_n.$$

Definition 2 (Markov Process/Markov Chain) $\langle X_n \rangle_n$ is a Markov chain if

$$\Pr[X_n = x_n | X_1 = x_1, \cdots, X_{n-1} = x_{n-1}] = \Pr[X_n = x_n | X_{n-1} = x_{n-1}], \ \forall n, x_1, \cdots, x_n.$$

If $X_i \in \Omega$ and Ω is finite, then $\Pr[X_n = x_n | X_{n-1} = x_{n-1}]$ is just $|\Omega|^2$ entries for every *n*. But, can we describe it in finite terms? No.

Definition 3 (Time Invariant Markov Chain) Markov Chain is time-invariant if

$$\Pr[X_n = a | X_{n-1} = b] = \Pr[X_{n+l} = a | X_{n+l-1} = b], \ \forall n, l, a, b \in \Omega.$$

Time invariant Markov chain can be specified by distribution on X_0 and probability transition matrix $\mathbf{P} = [P_{ij}]$, where $P_{ij} = \Pr[X_2 = j | X_1 = i]$. Throughout the rest of lecture, time invariant Markov chain will be referred to simply as Markov chain (MC).

Example 2: Consider the following three-state MC. In this case, $\boldsymbol{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

With $X_0 = A$, the resulting sequence will be "ABCABCABC...." Note that this is not stationary because $\Pr[X_0 = A, X_1 = B, X_2 = C] = 1$ but $\Pr[X_1 = A, X_2 = B, X_3 = C] = 0$. Instead, $\Pr[X_1 = B, X_2 = C, X_3 = A] = 1$

Fact 1 For every MC, \exists stationary distribution $\boldsymbol{\mu}$ on X_0 such that $\boldsymbol{\mu}$ and \boldsymbol{P} define a stationary process. In the example 2, $\boldsymbol{\mu} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix}$.

Because

$$Pr[X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n]$$

= Pr[X_1 = x_1] \cdot Pr[X_2 = x_2 | X_1 = x_1] \cdots Pr[X_n = x_n | X_{n-1} = x_{n-1}]
= Pr[X_1 = x_1] \cdot P_{x_1 x_2} \cdots P_{x_{n-1} x_n},

the overall distribution depends only on the distribution on X_1 , which implies that the distribution μ on X_0 is stationary if $\Pr[X_1 = i] = \mu_i (= \Pr[X_0 = i])$.

Example 3: Let us consider the following example:

In this case, $\mu_A = \mu_C = 0, \mu_B = 1$ is stationary, but $\mu_A = \mu_B = 0, \mu_C = 1$ is also stationary. More than one stationary distribution can be problematic, and this situation happens because the MC is reducible.

Definition 4 (Reducibility of Markov Chain) 1. Markov chain given by probability transition matrix **P** is reducible if **P** can be written as

$$\left[\begin{array}{c|c} P_0 & P_1 \\ \hline 0 & P_2 \end{array} \right]$$

where P_0, P_2 are square matrices.

2. MC is irreducible if it is not reducible.

In terms of graph structure, the "irreducible" and "aperiodic" characteristics can be interpreted as

- irreducible strongly connected, \exists path from each state *i* to state *j*.
- aperiodic greatest common divisor of cycle lengths is 1.

Theorem 2 (Perron-Frobenius's Theorem) Every (aperiodic) irreducible Markov chain has a unique stationary distribution.

For stationary distribution, the probability distribution on X_1 should be the same as $\boldsymbol{\mu}$, the probability distribution of X_0 . $\Rightarrow \Pr[X_1 = j] = \sum_{i=1}^{N} \mu_i P_{ij} = \mu_i$, where $N = |\Omega|$ and $\Omega = \{1, 2, \dots, N\}$. If we use vector-matrix notation,

$$\begin{bmatrix} \boldsymbol{\mu} \end{bmatrix} \begin{bmatrix} \boldsymbol{P} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu} \end{bmatrix}, \tag{1}$$

and μ corresponds to an eigenvector. For the example 1,

$$\boldsymbol{P} = \left[\begin{array}{rrrr} 0.9 & 0.1 & 0 \\ 0 & 2/3 & 1/3 \\ 2/3 & 1/3 & 0 \end{array} \right].$$

Theorem 2 implies that there exists a unique eigenvector with all entries non-negative. We can compute $\boldsymbol{\mu} = [\mu_1 \ \mu_2 \ \mu_3]$ using (1) and $\mu_1 + \mu_2 + \mu_3 = 1$. $\Rightarrow \boldsymbol{\mu} = [\frac{20}{32} \ \frac{9}{32} \ \frac{3}{32}]$.

3 Entropy Rate of Stochastic Process

There are two reasonable notions for measuring the uncertainty of $\mathscr{X} = \langle X_n \rangle_n$.

• Entropy rate:

$$H(\mathscr{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \cdots, X_n)$$
 if the limit exists.

• Entropy' rate:

$$H'(\mathscr{X}) = \lim_{n \to \infty} H(X_n | X_1, \cdots, X_{n-1})$$
 if the limit exists.

Theorem 3 Entropy rate of a stationary stochastic process exists and equals entropy' rate.

$$H(\mathscr{X}) = H'(\mathscr{X}).$$

Proof Idea The following inequality can be used for the proof of the existence of $H'(\mathscr{X})$.

$$H(X_n|X_1,\cdots,X_{n-1}) \le H(X_n|X_2,\cdots,X_{n-1}) = H(X_{n-1}|X_1,\cdots,X_{n-1}).$$

For complete proof, refer to pp.64-65 of *Cover*.

Theorem 4 If irreducible MC has probability transition matrix P and stationary distribution μ ,

$$H(\mathscr{X}) = H'(\mathscr{X}) = -\sum_{i,j} \mu_i P_{ij} \log P_{ij}.$$
(2)

Proof

$$H'(\mathscr{X}) = \lim_{n \to \infty} H(X_n | X_1, \cdots, X_{n-1})$$

=
$$\lim_{n \to \infty} H(X_n | X_{n-1})$$

=
$$H(X_2 | X_1)$$

=
$$\sum_i \Pr[X_1 = i] \cdot H(X_2 | X_1 = i)$$

=
$$-\sum_i \mu_i \sum_j P_{ij} \log P_{ij}.$$

Using (2), $H(\mathscr{X})$ of the example 1 can be computed:

$$H(\mathscr{X}) = \frac{5}{8}H(0.9) + \frac{3}{8}H\left(\frac{2}{3}\right).$$

AEP for Markov Chain:

$$-\frac{1}{n}\log p(X_1,\cdots,X_n)\longrightarrow H(\mathscr{X}).$$

This doesn't follow from our law of large numbers because random variables may be dependent on each other.

Hidden Markov Model: Now, let us consider the rate of $\langle Y_n \rangle_n$ in the example 1. $H'(\mathscr{Y}) = \lim_{n \to \infty} H(Y_n | Y_1, \dots, Y_{n-1})$, and is bounded by

$$H(Y_n|Y_1, \cdots, Y_{n-1}, X_1) \le H'(\mathscr{Y}) = \lim_{n \to \infty} H(Y_n|Y_1, \cdots, Y_{n-1}) \le H(Y_n|Y_1, \cdots, Y_{n-1}) \quad \forall n \le 1$$

(Try to prove the inequality at the left-hand side!) If we denote the interval between the upper and the lower bounds by ϵ_n ,

$$\epsilon_n = H(Y_n | Y_1, \cdots, Y_{n-1}) - H(Y_n | Y_1, \cdots, Y_{n-1}, X_1) = I(X_1; Y_n | Y_1, \cdots, Y_{n-1}),$$

and

$$\sum_{n=1}^{M} \epsilon_n = \sum_{n=1}^{M} I(X_1; Y_n | Y_1, \cdots, Y_{n-1}) \le H(X_1).$$