Lecture 5

Lecturer: Madhu Sudan
Scribe: Hyun Sung Chang

1 Introduction

1.1 Today's Topic

- Markov chains/processes
- Entropy rate of Markov chain

1.2 Motivating Example

Example 1: Let us start by considering the following example. What are the rates of X and Y ?

2 Stochastic Process

A stochastic process can be viewed as an infinite sequence of random variables, e.g., X_{-n}, X_{-n+1}, \cdots, $X_{0}, X_{1}, X_{2}, \cdots, X_{n}, \cdots$, whose distribution may be expressed by

$$
\operatorname{Pr}\left[X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{n}=x_{n}\right] \sim p\left(x_{1}, \cdots, x_{n}\right)
$$

There are some meaningful and restricted classes of stochastic process.

Definition 1 (Stationary Process) $\left\langle X_{n}\right\rangle_{n}$ is a stationary process if

$$
\operatorname{Pr}\left[X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right]=\operatorname{Pr}[\underbrace{X_{1+l}=x_{1}, \cdots, X_{n+l}=x_{n}}_{\text {time shift by } l}], \forall n, l, x_{1}, \cdots, x_{n} .
$$

Definition 2 (Markov Process/Markov Chain) $\left\langle X_{n}\right\rangle_{n}$ is a Markov chain if

$$
\operatorname{Pr}\left[X_{n}=x_{n} \mid X_{1}=x_{1}, \cdots, X_{n-1}=x_{n-1}\right]=\operatorname{Pr}\left[X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right], \forall n, x_{1}, \cdots, x_{n}
$$

If $X_{i} \in \Omega$ and Ω is finite, then $\operatorname{Pr}\left[X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right]$ is just $|\Omega|^{2}$ entries for every n. But, can we describe it in finite terms? No.

Definition 3 (Time Invariant Markov Chain) Markov Chain is time-invariant if

$$
\operatorname{Pr}\left[X_{n}=a \mid X_{n-1}=b\right]=\operatorname{Pr}\left[X_{n+l}=a \mid X_{n+l-1}=b\right], \forall n, l, a, b \in \Omega
$$

Time invariant Markov chain can be specified by distribution on X_{0} and probability transition matrix $\boldsymbol{P}=\left[P_{i j}\right]$, where $P_{i j}=\operatorname{Pr}\left[X_{2}=j \mid X_{1}=i\right]$. Throughout the rest of lecture, time invariant Markov chain will be referred to simply as Markov chain (MC).

Example 2: Consider the following three-state MC. In this case, $\boldsymbol{P}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$.

With $X_{0}=A$, the resulting sequence will be " $A B C A B C A B C \cdots$." Note that this is not stationary because $\operatorname{Pr}\left[X_{0}=A, X_{1}=B, X_{2}=C\right]=1$ but $\operatorname{Pr}\left[X_{1}=A, X_{2}=B, X_{3}=C\right]=0$. Instead, $\operatorname{Pr}\left[X_{1}=\right.$ $\left.B, X_{2}=C, X_{3}=A\right]=1$

Fact 1 For every $M C$, \exists stationary distribution $\boldsymbol{\mu}$ on X_{0} such that $\boldsymbol{\mu}$ and \boldsymbol{P} define a stationary process. In the example 2, $\boldsymbol{\mu}=\left[\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right]$.

Because

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1}\right. & \left.=x_{1}, X_{2}=x_{2}, \cdots, X_{n}=x_{n}\right] \\
& =\operatorname{Pr}\left[X_{1}=x_{1}\right] \cdot \operatorname{Pr}\left[X_{2}=x_{2} \mid X_{1}=x_{1}\right] \cdots \operatorname{Pr}\left[X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right] \\
& =\operatorname{Pr}\left[X_{1}=x_{1}\right] \cdot P_{x_{1} x_{2}} \cdots P_{x_{n-1} x_{n}}
\end{aligned}
$$

the overall distribution depends only on the distribution on X_{1}, which implies that the distribution $\boldsymbol{\mu}$ on X_{0} is stationary if $\operatorname{Pr}\left[X_{1}=i\right]=\mu_{i}\left(=\operatorname{Pr}\left[X_{0}=i\right]\right)$.

Example 3: Let us consider the following example:

In this case, $\mu_{A}=\mu_{C}=0, \mu_{B}=1$ is stationary, but $\mu_{A}=\mu_{B}=0, \mu_{C}=1$ is also stationary. More than one stationary distribution can be problematic, and this situation happens because the MC is reducible.

Definition 4 (Reducibility of Markov Chain) 1. Markov chain given by probability transition matrix \boldsymbol{P} is reducible if \boldsymbol{P} can be written as

$$
\left[\begin{array}{c|c}
\boldsymbol{P}_{0} & \boldsymbol{P}_{1} \\
\hline \mathbf{0} & \boldsymbol{P}_{2}
\end{array}\right]
$$

where $\boldsymbol{P}_{\mathbf{0}}, \boldsymbol{P}_{\mathbf{2}}$ are square matrices.
2. $M C$ is irreducible if it is not reducible.

In terms of graph structure, the "irreducible" and "aperiodic" characteristics can be interpreted as

- irreducible - strongly connected, \exists path from each state i to state j.
- aperiodic - greatest common divisor of cycle lengths is 1 .

Theorem 2 (Perron-Frobenius's Theorem) Every (aperiodic) irreducible Markov chain has a unique stationary distribution.

For stationary distribution, the probability distribution on X_{1} should be the same as $\boldsymbol{\mu}$, the probability distribution of $X_{0} . \Rightarrow \operatorname{Pr}\left[X_{1}=j\right]=\sum_{i=1}^{N} \mu_{i} P_{i j}=\mu_{i}$, where $N=|\Omega|$ and $\Omega=\{1,2, \cdots, N\}$. If we use vector-matrix notation,

$$
\begin{equation*}
[\boldsymbol{\mu}][\boldsymbol{P}]=[\boldsymbol{\mu}] \tag{1}
\end{equation*}
$$

and $\boldsymbol{\mu}$ corresponds to an eigenvector. For the example 1,

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.9 & 0.1 & 0 \\
0 & 2 / 3 & 1 / 3 \\
2 / 3 & 1 / 3 & 0
\end{array}\right]
$$

Theorem 2 implies that there exists a unique eigenvector with all entries non-negative. We can compute $\boldsymbol{\mu}=\left[\begin{array}{lll}\mu_{1} & \mu_{2} & \mu_{3}\end{array}\right] \operatorname{using}(1)$ and $\mu_{1}+\mu_{2}+\mu_{3}=1 . \Rightarrow \boldsymbol{\mu}=\left[\begin{array}{lll}\frac{20}{32} & \frac{9}{32} & \frac{3}{32}\end{array}\right]$.

3 Entropy Rate of Stochastic Process

There are two reasonable notions for measuring the uncertainty of $\mathscr{X}=\left\langle X_{n}\right\rangle_{n}$.

- Entropy rate:

$$
H(\mathscr{X})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, \cdots, X_{n}\right) \text { if the limit exists. }
$$

- Entropy ${ }^{\prime}$ rate:

$$
H^{\prime}(\mathscr{X})=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \cdots, X_{n-1}\right) \text { if the limit exists. }
$$

Theorem 3 Entropy rate of a stationary stochastic process exists and equals entropy' rate.

$$
H(\mathscr{X})=H^{\prime}(\mathscr{X}) .
$$

Proof Idea The following inequality can be used for the proof of the existence of $H^{\prime}(\mathscr{X})$.

$$
H\left(X_{n} \mid X_{1}, \cdots, X_{n-1}\right) \leq H\left(X_{n} \mid X_{2}, \cdots, X_{n-1}\right)=H\left(X_{n-1} \mid X_{1}, \cdots, X_{n-1}\right)
$$

For complete proof, refer to pp.64-65 of Cover.

Theorem 4 If irreducible MC has probability transition matrix \boldsymbol{P} and stationary distribution $\boldsymbol{\mu}$,

$$
\begin{equation*}
H(\mathscr{X})=H^{\prime}(\mathscr{X})=-\sum_{i, j} \mu_{i} P_{i j} \log P_{i j} . \tag{2}
\end{equation*}
$$

Proof

$$
\begin{aligned}
H^{\prime}(\mathscr{X}) & =\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \cdots, X_{n-1}\right) \\
& =\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}\right) \\
& =H\left(X_{2} \mid X_{1}\right) \\
& =\sum_{i} \operatorname{Pr}\left[X_{1}=i\right] \cdot H\left(X_{2} \mid X_{1}=i\right) \\
& =-\sum_{i} \mu_{i} \sum_{j} P_{i j} \log P_{i j} .
\end{aligned}
$$

Using (2), $H(\mathscr{X})$ of the example 1 can be computed:

$$
H(\mathscr{X})=\frac{5}{8} H(0.9)+\frac{3}{8} H\left(\frac{2}{3}\right) .
$$

AEP for Markov Chain:

$$
-\frac{1}{n} \log p\left(X_{1}, \cdots, X_{n}\right) \longrightarrow H(\mathscr{X}) .
$$

This doesn't follow from our law of large numbers because random variables may be dependent on each other.

Hidden Markov Model: Now, let us consider the rate of $\left\langle Y_{n}\right\rangle_{n}$ in the example 1. $H^{\prime}(\mathscr{Y})=$ $\lim _{n \rightarrow \infty} H\left(Y_{n} \mid Y_{1}, \cdots, Y_{n-1}\right)$, and is bounded by

$$
H\left(Y_{n} \mid Y_{1}, \cdots, Y_{n-1}, X_{1}\right) \leq H^{\prime}(\mathscr{Y})=\lim _{n \rightarrow \infty} H\left(Y_{n} \mid Y_{1}, \cdots, Y_{n-1}\right) \leq H\left(Y_{n} \mid Y_{1}, \cdots, Y_{n-1}\right) \quad \forall n .
$$

(Try to prove the inequality at the left-hand side!) If we denote the interval between the upper and the lower bounds by ϵ_{n},

$$
\epsilon_{n}=H\left(Y_{n} \mid Y_{1}, \cdots, Y_{n-1}\right)-H\left(Y_{n} \mid Y_{1}, \cdots, Y_{n-1}, X_{1}\right)=I\left(X_{1} ; Y_{n} \mid Y_{1}, \cdots, Y_{n-1}\right),
$$

and

$$
\sum_{n=1}^{M} \epsilon_{n}=\sum_{n=1}^{M} I\left(X_{1} ; Y_{n} \mid Y_{1}, \cdots, Y_{n-1}\right) \leq H\left(X_{1}\right)
$$

