
6.441 Transmission of Information February 23, 2006

Lecture 5
Lecturer: Madhu Sudan Scribe: Hyun Sung Chang

1 Introduction

1.1 Today’s Topic

• Markov chains/processes

• Entropy rate of Markov chain

1.2 Motivating Example

Example 1: Let us start by considering the following example. What are the rates of X and Y ?
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2 Stochastic Process

A stochastic process can be viewed as an infinite sequence of random variables, e.g., X−n, X−n+1, · · · ,
X0, X1, X2, · · · , Xn, · · · , whose distribution may be expressed by

Pr[X1 = x1, X2 = x2, · · · , Xn = xn] ∼ p(x1, · · · , xn).

There are some meaningful and restricted classes of stochastic process.
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Definition 1 (Stationary Process) 〈Xn〉n is a stationary process if

Pr[X1 = x1, · · · , Xn = xn] = Pr[X1+l = x1, · · · , Xn+l = xn︸ ︷︷ ︸
time shift by l

], ∀n, l, x1, · · · , xn.

Definition 2 (Markov Process/Markov Chain) 〈Xn〉n is a Markov chain if

Pr[Xn = xn|X1 = x1, · · · , Xn−1 = xn−1] = Pr[Xn = xn|Xn−1 = xn−1], ∀n, x1, · · · , xn.

If Xi ∈ Ω and Ω is finite, then Pr[Xn = xn|Xn−1 = xn−1] is just |Ω|2 entries for every n. But, can
we describe it in finite terms? No.

Definition 3 (Time Invariant Markov Chain) Markov Chain is time-invariant if

Pr[Xn = a|Xn−1 = b] = Pr[Xn+l = a|Xn+l−1 = b], ∀n, l, a, b ∈ Ω.

Time invariant Markov chain can be specified by distribution on X0 and probability transition matrix
P = [Pij ], where Pij = Pr[X2 = j|X1 = i]. Throughout the rest of lecture, time invariant Markov chain
will be referred to simply as Markov chain (MC).

Example 2: Consider the following three-state MC. In this case, P =




0 1 0
0 0 1
1 0 0


 .
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With X0 = A, the resulting sequence will be “ABCABCABC · · · .” Note that this is not stationary
because Pr[X0 = A,X1 = B, X2 = C] = 1 but Pr[X1 = A,X2 = B,X3 = C] = 0. Instead, Pr[X1 =
B, X2 = C, X3 = A] = 1

Fact 1 For every MC, ∃stationary distribution µ on X0 such that µ and P define a stationary process.
In the example 2, µ =

[
1
3

1
3

1
3

]
.

Because

Pr[X1 = x1, X2 = x2, · · · , Xn = xn]
= Pr[X1 = x1] · Pr[X2 = x2|X1 = x1] · · ·Pr[Xn = xn|Xn−1 = xn−1]
= Pr[X1 = x1] · Px1x2 · · ·Pxn−1xn ,

the overall distribution depends only on the distribution on X1, which implies that the distribution µ
on X0 is stationary if Pr[X1 = i] = µi(= Pr[X0 = i]).
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Example 3: Let us consider the following example:
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In this case, µA = µC = 0, µB = 1 is stationary, but µA = µB = 0, µC = 1 is also stationary.
More than one stationary distribution can be problematic, and this situation happens because the MC
is reducible.

Definition 4 (Reducibility of Markov Chain) 1. Markov chain given by probability transition
matrix P is reducible if P can be written as

[
P0 P1

0 P2

]
,

where P0, P2 are square matrices.

2. MC is irreducible if it is not reducible.

In terms of graph structure, the “irreducible” and ”aperiodic” characteristics can be interpreted as

• irreducible - strongly connected, ∃path from each state i to state j.

• aperiodic - greatest common divisor of cycle lengths is 1.

Theorem 2 (Perron-Frobenius’s Theorem) Every (aperiodic) irreducible Markov chain has a unique
stationary distribution.

For stationary distribution, the probability distribution on X1 should be the same as µ, the proba-
bility distribution of X0. ⇒ Pr[X1 = j] =

∑N
i=1 µiPij = µi, where N = |Ω| and Ω = {1, 2, · · · , N}. If

we use vector-matrix notation,

[ µ ]


 P


 = [ µ ], (1)

and µ corresponds to an eigenvector. For the example 1,

P =




0.9 0.1 0
0 2/3 1/3

2/3 1/3 0


 .

Theorem 2 implies that there exists a unique eigenvector with all entries non-negative. We can compute
µ = [µ1 µ2 µ3] using (1) and µ1 + µ2 + µ3 = 1. ⇒ µ = [ 2032

9
32

3
32 ].
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3 Entropy Rate of Stochastic Process

There are two reasonable notions for measuring the uncertainty of X = 〈Xn〉n.

• Entropy rate:

H(X ) = lim
n→∞

1
n

H(X1, · · · , Xn) if the limit exists.

• Entropy′ rate:
H ′(X ) = lim

n→∞
H(Xn|X1, · · · , Xn−1) if the limit exists.

Theorem 3 Entropy rate of a stationary stochastic process exists and equals entropy′ rate.

H(X ) = H ′(X ).

Proof Idea The following inequality can be used for the proof of the existence of H ′(X ).

H(Xn|X1, · · · , Xn−1) ≤ H(Xn|X2, · · · , Xn−1) = H(Xn−1|X1, · · · , Xn−1).

For complete proof, refer to pp.64-65 of Cover.

Theorem 4 If irreducible MC has probability transition matrix P and stationary distribution µ,

H(X ) = H ′(X ) = −
∑

i,j

µiPij log Pij . (2)

Proof

H ′(X ) = lim
n→∞

H(Xn|X1, · · · , Xn−1)

= lim
n→∞

H(Xn|Xn−1)

= H(X2|X1)

=
∑

i

Pr[X1 = i] ·H(X2|X1 = i)

= −
∑

i

µi

∑

j

Pij log Pij .

Using (2), H(X ) of the example 1 can be computed:

H(X ) =
5
8
H(0.9) +

3
8
H

(
2
3

)
.

AEP for Markov Chain:
− 1

n
log p(X1, · · · , Xn) −→ H(X ).

This doesn’t follow from our law of large numbers because random variables may be dependent on
each other.

Hidden Markov Model: Now, let us consider the rate of 〈Yn〉n in the example 1. H ′(Y ) =
limn→∞H(Yn|Y1, · · · , Yn−1), and is bounded by

H(Yn|Y1, · · · , Yn−1, X1) ≤ H ′(Y ) = lim
n→∞

H(Yn|Y1, · · · , Yn−1) ≤ H(Yn|Y1, · · · , Yn−1) ∀n.
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(Try to prove the inequality at the left-hand side!) If we denote the interval between the upper and the
lower bounds by εn,

εn = H(Yn|Y1, · · · , Yn−1)−H(Yn|Y1, · · · , Yn−1, X1) = I(X1; Yn|Y1, · · · , Yn−1),

and
M∑

n=1

εn =
M∑

n=1

I(X1; Yn|Y1, · · · , Yn−1) ≤ H(X1).
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