
6.441 Transmission of Information Feb 14, 2006

Lecture 3
Lecturer: Madhu Sudan Scribe: Daniel Kim (dskim116)

1 Today’s outline

• Property of information and entropy

• New notions: KL divergence, Markov chains

• results: non-negativity of mutual information, data processing inequality,
Fano’s inequality

2 Lecture 2’s Review

Let us define marginal and joint distributions. p(x) denotes a marginal proba-
bility that X = x, p(y) denotes a marginal probability that Y = y and p(x, y)
denotes a joint probability that X = x and Y = y.

• Entropy:
H(X) = −

∑
x

p(x) log p(x)

• Conditional entropy:

H(X|Y ) =
∑

y∈Ωy

py(y)H(X|Y = y) =
∑
x,y

p(x, y) log
py(y)
p(x, y)

• Mutual information:

I(x, y) =
∑
x,y

p(x, y) log
p(x, y)

p(x) · p(y)
= I(y, x)

• Chain rule:

H(x, y) = H(x) + H(y|x)

Applying this iteratively, we derive:

H(x1, x2, · · · , xn) = H(x1) + H(x2|x1) + · · ·

=
n∑

i=1

H(xi|x1, x2, · · · , xi−1)
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3 Is I(X, Y ) ≥ 0 ?

Proving I(X, Y ) ≥ 0 is equivalent to proving that H(X|Y ) ≤ H(X).

I(x, y) =
∑
x,y

p(x, y) log
p(x, y)

p(x) · p(y)
= E

[
log

p(x, y)
p(x) · p(y)

]
≥ 0

with equality when x and y are independent because:

p(x, y) = p(x) · p(y) =⇒ I(x, y) = 0

Before we prove Claim 3, let us define function convexity and state Jensen’s
Inequality.

Definition 1 Function f is convex when either of following conditions holds:
{

f : R→ R is convex if f ′′(x) ≥ 0 ∀x
f : R→ R is strictly convex if f ′′(x) > 0 ∀x

For example, x2, ex and − log x are convex functions.

Theorem 2 Jensen’s Inequality: E[f(z)] ≥ f [E[z]] provided f is convex.

Now, here is the claim.

Claim 3 E(x,y)∼p

[
log p(x,y)

q(x,y)

]
≥ 0 with equality when p(x, y) = q(x, y).

Proof Let us define new variable z = q(x,y)
p(x,y) . Then,

E(x,y)∼p

[
log

p(x, y)
q(x, y)

]
= Ez

[
log

1
z

]

= E [− log z]
≥ − log E[z](∵ Jensen’s Inequality)

= − log
[
E(x,y)

[
q(x, y)
p(x, y)

]]

= − log

[∑
x,y

p(x, y)
q(x, y)
p(x, y)

]
= − log

[∑
x,y

q(x, y)

]
= − log 1 = 0.

Here, note that E
[
log p(x,y)

q(x,y)

]
shows how much similarity q(x, y) and p(x, y)

share.

4 Relative Entropy

Definition 4 The relative entropy or Kullback-Liebler distance between
two probability mass functions p(z) and q(z) is defined as:

D(p||q) =
∑

z

p(z) log
p(z)
q(z)

.
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4.1 Example

Let us consider the case when x ∈ {0, 1} with following distributions:

p : X =
{

0 with probability 1
1 with probability 0

q : X =
{

0 with probability 1/2
1 with probability 1/2

Based on the above scenario, we get D(p||q) = log 2 and D(q||p) = ∞.

4.2 Compression motivation example

Let us consider our satellite example with x ∼ p = (p1, p2, · · · , pN ). Opti-
mal compression should require

⌈
log 1

pi

⌉
bits long string. x with distribution

q would require
⌈
log 1

q

⌉
bits long string. By definition, average inefficiency of

compressing by q when given distribution is p is D(p||q).

4.3 Basic Property

• D(p||q) ≥ 0 with equality only when p = q

• I(X, Y ) = D(p(x, y)||p(x) · p(y)) ≥ 0

• I(X, Y ) = H(X)−H(X|Y ) ≥ 0 (∵ conditioning reduces entropy)

• H(X1, X2, · · · , Xn) = H(X1) + H(X2|X1) + H(X3|(X1, X2)) + · · ·
Substituting the following:

H(X1) ≤ H(X1)
H(X2|X1) ≤ H(X2)
H(X3|(X1, X2)) ≤ H(X3)
...

we can reduce it to:

∴ H(X1, X2, · · ·Xn) ≤
∑

n

H(Xn).

• H(x) = log(|Ωx|) −D(p||U) where U is uniform distribution on Ωx. Be-
cause D(p||q) ≥ 0, we derive that H(x) ≤ log(|Ωx|).

4.4 Is entropy concave?

In order to prove whether entropy is concave or not, we need to show following:

H(λp + (1− λ)q) ≥ λH(p) + (1− λ)H(q) (1)
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Proof Let us assume that x ∼ p and y ∼ q on set Ω. Also, let us define
another variable b with following distribution.

b =
{

0 with probability λ
1 with probability 1− λ

Using these variables, let us define a new variable Z with following distribution
:

Z : if b = 0 then x; else y.

Then, the left-hand side of Equation (1) is reduced to H(Z) and the right-hand
side of Equation (1) is reduced to H(Z|b). Because conditioning reduces the
uncertainty, H(Z) ≥ H(Z|b). This proves that the entropy is concave.

5 Data Processing Inequality (Markov Chain)

Let us consider three states, X, Y , and Z. X → Y → Z forms a Markov chain
if and only if X and Z are conditionally independent given Y . Let us put the
definition into mathematical term. X → Y → Z forms a Markov chain if and
only if either of following conditions is true:

pZ|(X,Y )(z|(x, y)) = pZ|Y (z|y)
or

p(X,Z)|Y ((x, z)|y) = pX|Y (x|y) · pZ|Y (z|y)

Also, X → Y → Z ⇐⇒ Z → Y → X. Now let us consider the property of
Markov chain.

Claim 5 If X → Y → Z, then I(X, Z) ≤ I(X, Y ).

Proof

I(X, (Y, Z)) = I(X, Z) + I((X, Y )|Z)
= I(X, Y ) + I((X, Z)|Y )

Substituting the fact that I((X, Z)|Y ) = 0 and I((X, Y )|Z) ≥ 0, we get I(x, z) ≤
I(x, y).

6 Fano’s Inequality

Let E be an event and let Pe denote the probability when X 6= X̃.

Theorem 6 When H(X|Y ) is large,

Pe ≥ H(X|Y )− 1
log |Ωx| .

3-4



Proof

H((E, X)|Y ) = H(X|Y ) + H(E|(X, Y ))
= H(E|Y ) + H(X|(E, Y ))

Let us take a look at each term:

H(E|(X, Y )) = 0
H(E|Y ) ≤ H(Pe)

H(X|(E, Y )) = Pe ·H(X|(E = 1, Y )) + (1− Pe)H(X|(E = 0, Y ))
= Pe ·H(X|(E = 1, Y ))
≤ Pe log(|Ωx| − 1)

Substituting these into original equation, we prove the theorem.
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