Feb 14, 2006

Lecture 3

Lecturer: Madhu Sudan

Scribe: Daniel Kim (dskim116)

1 Today's outline

- Property of information and entropy
- New notions: KL divergence, Markov chains
- results: non-negativity of mutual information, data processing inequality, Fano's inequality

2 Lecture 2's Review

Let us define marginal and joint distributions. p(x) denotes a marginal probability that X = x, p(y) denotes a marginal probability that Y = y and p(x, y) denotes a joint probability that X = x and Y = y.

• Entropy:

$$H(X) = -\sum_{x} p(x) \log p(x)$$

• Conditional entropy:

$$H(X|Y) = \sum_{y \in \Omega_y} p_y(y) H(X|Y = y) = \sum_{x,y} p(x,y) \log \frac{p_y(y)}{p(x,y)}$$

• Mutual information:

$$I(x,y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x) \cdot p(y)} = I(y,x)$$

• Chain rule:

$$H(x,y) = H(x) + H(y|x)$$

Applying this iteratively, we derive:

$$H(x_1, x_2, \cdots, x_n) = H(x_1) + H(x_2|x_1) + \cdots$$
$$= \sum_{i=1}^n H(x_i|x_1, x_2, \cdots, x_{i-1})$$

$$3-1$$

3 Is $I(X, Y) \ge 0$?

Proving $I(X, Y) \ge 0$ is equivalent to proving that $H(X|Y) \le H(X)$.

$$I(x,y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x) \cdot p(y)} = E\left[\log \frac{p(x,y)}{p(x) \cdot p(y)}\right] \ge 0$$

with equality when x and y are independent because:

 $p(x,y) = p(x) \cdot p(y) \Longrightarrow I(x,y) = 0$

Before we prove Claim 3, let us define function convexity and state Jensen's Inequality.

Definition 1 Function f is **convex** when either of following conditions holds:

$$\begin{cases} f & : \mathbb{R} \to \mathbb{R} \text{ is convex if } f''(x) \ge 0 \ \forall x \\ f & : \mathbb{R} \to \mathbb{R} \text{ is strictly convex if } f''(x) > 0 \ \forall x \end{cases}$$

For example, x^2 , e^x and $-\log x$ are convex functions.

Theorem 2 Jensen's Inequality: $E[f(z)] \ge f[E[z]]$ provided f is convex.

Now, here is the claim.

Claim 3 $E_{(x,y)\sim p}\left[\log \frac{p(x,y)}{q(x,y)}\right] \ge 0$ with equality when p(x,y) = q(x,y).

Proof Let us define new variable $z = \frac{q(x,y)}{p(x,y)}$. Then,

$$E_{(x,y)\sim p}\left[\log\frac{p(x,y)}{q(x,y)}\right] = E_z\left[\log\frac{1}{z}\right]$$

= $E\left[-\log z\right]$
 $\geq -\log E[z](\because \text{ Jensen's Inequality})$
= $-\log\left[E_{(x,y)}\left[\frac{q(x,y)}{p(x,y)}\right]\right]$
= $-\log\left[\sum_{x,y}p(x,y)\frac{q(x,y)}{p(x,y)}\right] = -\log\left[\sum_{x,y}q(x,y)\right] = -\log 1 = 0$

Here, note that $E\left[\log \frac{p(x,y)}{q(x,y)}\right]$ shows how much similarity q(x,y) and p(x,y) share.

4 Relative Entropy

Definition 4 The relative entropy or Kullback-Liebler distance between two probability mass functions p(z) and q(z) is defined as:

$$D(p||q) = \sum_{z} p(z) \log \frac{p(z)}{q(z)}.$$

4.1 Example

Let us consider the case when $x \in \{0, 1\}$ with following distributions:

$$p: X = \begin{cases} 0 & \text{with probability 1} \\ 1 & \text{with probability 0} \end{cases}$$

$$q: X = \begin{cases} 0 & \text{with probability } 1/2\\ 1 & \text{with probability } 1/2 \end{cases}$$

Based on the above scenario, we get $D(p||q) = \log 2$ and $D(q||p) = \infty$.

4.2 Compression motivation example

Let us consider our satellite example with $x \sim p = (p_1, p_2, \dots, p_N)$. Optimal compression should require $\left[\log \frac{1}{p_i}\right]$ bits long string. x with distribution q would require $\left[\log \frac{1}{q}\right]$ bits long string. By definition, average inefficiency of compressing by q when given distribution is p is D(p||q).

4.3 Basic Property

- $D(p||q) \ge 0$ with equality only when p = q
- $I(X,Y) = D(p(x,y)||p(x) \cdot p(y)) \ge 0$
- $I(X,Y) = H(X) H(X|Y) \ge 0$ (:: conditioning reduces entropy)
- $H(X_1, X_2, \dots, X_n) = H(X_1) + H(X_2|X_1) + H(X_3|(X1, X2)) + \dots$ Substituting the following:

$$H(X_{1}) \leq H(X_{1}) H(X_{2}|X_{1}) \leq H(X_{2}) H(X_{3}|(X_{1}, X_{2})) \leq H(X_{3}) \vdots$$

we can reduce it to:

$$\therefore H(X_1, X_2, \cdots X_n) \le \sum_n H(X_n).$$

• $H(x) = \log(|\Omega_x|) - D(p||U)$ where U is uniform distribution on Ω_x . Because $D(p||q) \ge 0$, we derive that $H(x) \le \log(|\Omega_x|)$.

4.4 Is entropy concave?

In order to prove whether entropy is concave or not, we need to show following:

$$H(\lambda p + (1 - \lambda)q) \ge \lambda H(p) + (1 - \lambda)H(q) \tag{1}$$

Proof Let us assume that $x \sim p$ and $y \sim q$ on set Ω . Also, let us define another variable b with following distribution.

$$b = \begin{cases} 0 & \text{with probability } \lambda \\ 1 & \text{with probability } 1 - \lambda \end{cases}$$

Using these variables, let us define a new variable ${\cal Z}$ with following distribution :

$$Z$$
: if $b = 0$ then x ; else y .

Then, the left-hand side of Equation (1) is reduced to H(Z) and the right-hand side of Equation (1) is reduced to H(Z|b). Because conditioning reduces the uncertainty, $H(Z) \ge H(Z|b)$. This proves that the entropy is concave.

5 Data Processing Inequality (Markov Chain)

Let us consider three states, X, Y, and $Z, X \to Y \to Z$ forms a Markov chain if and only if X and Z are conditionally independent given Y. Let us put the definition into mathematical term. $X \to Y \to Z$ forms a Markov chain if and only if either of following conditions is true:

$$p_{Z|(X,Y)}(z|(x,y)) = p_{Z|Y}(z|y)$$

or
$$p_{(X,Z)|Y}((x,z)|y) = p_{X|Y}(x|y) \cdot p_{Z|Y}(z|y)$$

Also, $X \to Y \to Z \iff Z \to Y \to X$. Now let us consider the property of Markov chain.

Claim 5 If $X \to Y \to Z$, then $I(X, Z) \leq I(X, Y)$.

Proof

$$I(X, (Y, Z)) = I(X, Z) + I((X, Y)|Z) = I(X, Y) + I((X, Z)|Y)$$

Substituting the fact that I((X,Z)|Y) = 0 and $I((X,Y)|Z) \ge 0$, we get $I(x,z) \le I(x,y)$.

6 Fano's Inequality

Let E be an event and let P_e denote the probability when $X \neq \tilde{X}$.

Theorem 6 When H(X|Y) is large,

$$P_e \ge \frac{H(X|Y) - 1}{\log |\Omega_x|}.$$

Proof

$$H((E, X)|Y) = H(X|Y) + H(E|(X, Y))$$

= $H(E|Y) + H(X|(E, Y))$

Let us take a look at each term:

$$H(E|(X,Y)) = 0$$

$$H(E|Y) \le H(P_e)$$

$$H(X|(E,Y)) = P_e \cdot H(X|(E=1,Y)) + (1-P_e)H(X|(E=0,Y))$$

= $P_e \cdot H(X|(E=1,Y))$
 $\leq P_e \log(|\Omega_x| - 1)$

Substituting these into original equation, we prove the theorem. \blacksquare