
6.441 Transmission of Information Feb 9, 2006

Lecture 2
Lecturer: Madhu Sudan Scribe: Cy Chan

1 Administrivia

• Questionnaire - get form from web and fill out

• Scribing - sign up on website

• Mailing List - if you haven’t received an email already, tell staff

• Problem Set 1 - due 2/22/06

2 Introduction

• Entropy - associated with a random variable (RV) and quantifies the
amount of uncertainty associated with that RV

• Information - associated with a pair of RVs:

I(X; Y ) = how much Y informs us about X

3 Entropy

3.1 Example

Let X, Y , and W be RVs where:

X =
{

0 with probability 1/2
1 with probability 1/2

Y =
{

0 with probability 7/8
1 with probability 1/8

W =





0 with probability 9/10
1 with probability 1/20
2 with probability 1/20

Intuitively, X is more random than Y , but how do we make a comparison
between Y and W? We need a way of quantifying the amount of randomness
in each RV.
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3.2 Derivation of Entropy H(Z) for Bernoulli RV Z

Define Z to be a Bernoulli RV with parameter p:

Z =
{

0 with probability 1− p
1 with probability p

How many bits are required to convey the value of Z? If we only communi-
cate a single instance of Z, we must send at least 1 bit, but if we are sending
many instances, we can batch the values as in the previous lecture and achieve
an average of less than 1 bit per value.

Suppose we have a sequence Z1, Z2, . . . , Zn of n independent, identically
distributed (IID) RVs each with the same distribution as Z above. We prescribe
the following algorithm to encode a sequence z1, z2, . . . , zn drawn from this
distribution:

1. Send k =
∑n

i=1 zi, which takes k bits (takes log2 n bits)

2. Create a table Tk that describes every sequence with k 1’s and (n− k) 0’s

3. Send the index in the table that describes the sequence z1, z2, . . . , zn (takes

log2

(
n
k

)
bits)

We can write the expected length of the resulting encoding as

l =
n∑

k=0

(
n
k

)
pk(1− p)n−k log2

(
n
k

)
+ log2 n.

To simplify, we make use of the law of large numbers, from which we get

Pr [k /∈ [(p− ε)n, (p + ε)n]] ≤ 2−ε2n.

Then,

l =
(p+ε)n∑

k=(p−ε)n

(
n
k

)
pk(1−p)n−k log2

(
n
k

)
+

∑

k/∈[(p−ε)n,(p+ε)n]

Pr[k is such]
(

n
k

)
+log2 n.

Since Pr
[
k /∈ [(p− ε)n, (p + ε)n]

] (
n
k

)
≤ 2−ε2nn, the second term becomes

vanishingly small as n gets large. Similarly, the third term log2 n vanishes when
we divide by n when taking the average encoding length per value. In the first
term we note the following:

(p+ε)n∑

k=(p−ε)n

(
n
k

)
pk(1− p)n−k ≤

n∑

k=0

(
n
k

)
pk(1− p)n−k = 1,

and for each term in the summation, k ≈ pn, so

(p+ε)n∑

k=(p−ε)n

(
n
k

)
pk(1− p)n−k log2

(
n
k

)
≤ 1 · log2

(
n
pn

)
.

Stirling’s approximation for n! implies
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(
n
pn

)
≈

(
1
p

)pn (
1

1− p

)(1−p)n

,

so for large n:

l ≤ log2

(
n
pn

)
≈ log2

[(
1
p

)pn (
1

1− p

)(1−p)n
]

l ≤ n

[
p log2

1
p

+ (1− p) log2

1
1− p

]
.

The entropy H(Z) is the average encoding length per value:

H(Z) = p log2

1
p

+ (1− p) log2

1
1− p

.

3.3 Extensions to Non-Bernoulli discrete RVs

What if we have a RV that takes N values? Consider a RV Z that takes values
in {1, 2, . . . , N}, where pi = Pr[Z = i]. We define two new RVs, Z1 and Z2,
where

Z1 =
{

0 if Z = 1
1 otherwise

Pr[Z1 = 0] = p1, and Pr[Z1 = 1] = 1− p1,

Z2 = Z|{Z1 = 1}

Pr[Z2 = i] =
pi

1− p1
, for i ∈ {2, 3, . . . , N}.

We can show that

H(Z) = H(Z1) + Pr[Z1 = 1]H(Z2),

and by induction that

H(Z) =
N∑

i=1

pi log2

1
pi

.

Note that we would have gotten the same answer no matter how we partition
the sequence and assign new random variables.

3.4 Properties of Entropy

The entropy function satisfies the following three properties:

1. H(p1, p2, . . . , pN ) is symmetric in its arguments

2. H(p1, p2, . . . , pN ) = H(p1, 1− p1) + (1− p1)H( p2
1−p1

, p3
1−p1

, . . . , pN

1−p1
)

3. H(p1, p2, . . . , pN ) ≤ log2N
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In property 3, the inequality is strict unless pi = 1
N for all i. In other words,

maximum entropy occurs when the probability mass is evenly distributed. For
probability functions with unbounded support, it is possible to have unbounded
entropy. For example, over all densities on the real line, the density that maxi-
mizes entropy (indeed the differential entropy) for a given variance is a gaussian
distribution. For densities over positive reals with a given mean, the entropy
maximizing density is the exponential distribution. This is because the square
of a zero mean Gaussian random variable is exponentially distribution with the
mean equal to its variance.

Other functions may satisfy the above three requirements, but if we change
property 3 to

3′. H( 1
N , 1

N , . . . , 1
N ) = log2N ,

then properties 1, 2, and 3′ imply our specific entropy function H(Z) =
∑N

i=1 pi log2
1
pi

.

3.5 Joint and Conditional Entropy

We can extend our definition of entropy to include joint distributions of RVs.
If we have a pair of RVs (X, Y ) with density P (X,Y ) over Ωx × Ωy, we define
the joint entropy as:

H(X,Y ) =
∑

x∈Ωx,y∈Ωy

P (X = x, Y = y) log2

1
P (X = x, Y = y)

.

We define conditional entropy H(X|Y ) as the average (over Y ) entropy of X
given Y :

H(X, Y ) =
∑

y∈Ωy

Py(y) H(X|Y = y).

Intuitively, we sense that H(X) should be no smaller than H(X|Y ), which we
will prove next lecture. In the satellite example in the previous lecture, if X is
the satellite transmission and Y is what Earth received, H(X|Y ) is the number
of bits necessary to fix the errors.

4 Information

How much information does Y give about X (and vice versa)? First, we state
the chain rule of entropy:

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ).

Rearranging the terms, we define the quantity

I(X;Y ) , H(X)−H(X|Y ) = H(Y )−H(Y |X)

as the mutual information between X and Y . Since H(X|Y ) ≤ H(X), the
mutual information is always non-negative. As an example, consider tossing 10
coins and letting X be the values of the first 7 coins and Y be the value of the
last 5 coins. Then
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H(X) = 7 and H(Y ) = 5
H(X|Y ) = 5 and H(Y |X) = 3

I(X; Y ) = I(Y ;X) = 2.
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