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Computational Complexity of Flattening Fixed-Angle Orthogonal Chains
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Abstract

Planar/flat configurations of fixed-angle chains and
trees are well studied in the context of polymer science,
molecular biology, and puzzles. In this paper, we fo-
cus on a simple type of fixed-angle linkage: every edge
has unit length (equilateral), and each joint has a fixed
angle of 90° (orthogonal) or 180° (straight). When the
linkage forms a path (open chain), it always has a planar
configuration, namely the zig-zag which alternating the
90° angles between left and right turns. But when the
linkage forms a cycle (closed chain), or is forced to lie
in a box of fixed size, we prove that the flattening prob-
lem — deciding whether there is a planar noncrossing
configuration — is strongly NP-complete.

Back to open chains, we turn to the Hydrophobic—-
Hydrophilic (HP) model of protein folding, where each
vertex is labeled H or P, and the goal is to find a folding
that maximizes the number of H-H adjacencies. In the
well-studied HP model, the joint angles are not fixed.
We introduce and analyze the fixed-angle HP model,
which is motivated by real-world proteins. We prove
strong NP-completeness of finding a planar noncross-
ing configuration of a fixed-angle orthogonal equilateral
open chain with the most H-H adjacencies, even if the
chain has only two H vertices. (Effectively, this lets us
force the chain to be closed.)

1 Introduction

In this paper, we introduce and investigate a new model
of protein folding. We are given an equilateral fized-
angle chain (“protein”), where each vertex is marked
H or P and has a specified fixed angle, and edges all
have unit length. The goal is to embed the chain into a
given grid (e.g., 2D square, 3D cube, 2D triangular, or
2D hexagonal) while

1. respecting the fixed angles (but each angle is still
free to be a left or right turn in 2D or spin in 3D);

2. without self-crossing in the embedding; and
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3. maximizing the number of H-H grid adjacencies.

This is a fixed-angle version of the well-studied HP
model of protein folding (where the angles are normally
free to take on any value), which is known to be NP-
hard in the 2D square grid [4] and 3D cube grid [3].
Fixed angles are motivated by real-world proteins; see
[7, Chapters 8-9]. In the 2D square grid or 3D cube
grid studied here, we can restrict to orthogonal fixed-
angle chains where all fixed angles are 90° or 180°. For
example, the popular “Tangle” toy restricts further to
all fixed angles being 90°; see [B].

In the 3D cube grid, NP-hardness of fixed-angle
HP protein folding follows from [I] which proves NP-
hardness of embedding a fixed-angle orthogonal equi-
lateral chain of n3 vertices into an n x n x n 3D cube
grid. If we make all vertices Hs, then a cube embedding
is the best way to maximize H-H adjacencies, as the
cube uniquely minimizes surface area where potential
adjacencies are lost.

In this paper, we prove that the fixed-angle HP pro-
tein folding problem is NP-hard in the 2D square grid,
even if the chain has only two H vertices and those ver-
tices are its endpoints. In other words, given a fixed-
angle orthogonal equilateral HP chain, we prove it is
strongly NP-hard to find any planar noncrossing em-
bedding where the endpoints (the two H vertices) are
adjacent. This result is tight in the sense that any fixed-
angle orthogonal equilateral chain with fewer than two
H vertices (and hence can have no H-H adjacencies) has
a noncrossing embedding, given by zig-zagging the 90°
angles to alternate between left and right turns.

Fixed-angle HP protein folding where only the two
endpoints are H vertices is nearly equivalent to finding
any planar noncrossing embedding of a closed fixed-
angle chain (where the first and last vertex are identi-
fied, and vertices are no longer marked H or P). This
is called the flattening problem for fixed-angle closed
chains. The only difference is that, in the flattening
problem, the first/last vertex has a fixed-angle con-
straint, whereas in the HP model, the two necessarily
adjacent H vertices could form any angle.

Nonetheless, we show that the flattening problem
for fixed-angle orthogonal equilateral closed chains is
strongly NP-complete. Past work proved strong NP-
hardness when this problem was generalized to fixed-
angle orthogonal equilateral caterpillar tree (instead of
a chain) or when we allow nonorthogonal fixed angles
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(and working off-grid) [6], but left this case open.

Finally our work also addresses two open problems
from [I]. We solve one open problem by proving strong
NP-completeness of deciding whether a given fixed-
angle orthogonal equilateral chain can be packed into
a 2D square (whereas [I] proved an analogous result for
a 3D cube). We also prove that this problem remains
NP-complete when the chain is only a constant factor
longer than the side length of the square (and thus the
square is sparsely filled), answering the 2D analog of a
3D question from [I].

2 Preliminaries

A linkage consists of a structure graph G = (V,E)
and edge-length function £ : E — R*. A configuration
of a linkage in 2D is a mapping C' : V — R? satisfying
the constraint ¢(u,v) = ||C(u) — C(v)| for each edge
{u,v} € E. Let z(C(u)) and y(C(u)) be the z- and
y-coordinate of C(u), respectively. A configuration is
noncrossing if any two edges e1, eo € F intersect only
at a shared vertex v € e1 Nes.

A linkage is equilateral if {(e) = 1 for every e € E.
A linkage with n vertices is an open chain if its struc-
ture graph G is a path (vg,v1,...,v,-1), and it is a
closed chain if G is a cycle (v, v1,...,Vn—1,Un = Up).
A fized-angle chain is a chain together with an angle
function 0 : V' — [0°,180°], constraining configurations
to have an angle of #(v) at every vertex v, except for
the two endpoints of an open chain. For notational con-
venience, we define (vg) = 6(v,—1) = 180° for an open
chain. A fixed-angle chain is orthogonal if we have
O(v;) € {90°,180°} for every vertex v;.

The embedding problem asks to determine whether
a given linkage has a noncrossing configuration in 2D.
For general linkages, this problem is IR-complete [2].
For fixed-angle orthogonal chains, the problem is in NP:
given a binary choice of turning left or right at each
vertex, we can construct an embedding (say, placing the
first vertex at the origin and the second vertex on the
positive z axis), and check for collisions and (for closed
chains) closure. In fact, for fixed-angle orthogonal open
chains, every instance is a “yes” instance:

Observation 1 FEvery fized-angle orthogonal open
chain has a noncrossing configuration.

Proof. Intuitively, we embed the chain in a zig-zag.
Precisely, let P = (vg,v1,...,v,—1) be the path struc-
ture graph. First we put vg at (0,0), and v; at (1,0). For
eachi=2,3,...,n—1, we define z(C(v;)) and y(C(v;))
as follows. When 6(v;) = 180°, we have no choice:
z(C(v3)) = 2(C(vi-1)) + (2(C(vi-1)) —2(C(vi—2))) and
y(C(vi)) = y(Cvi-1)) + W(C(vi—1)) — y(C(vi-2))).
When 6(v;) = 90° and C(v;—2)C(v;_1) is horizon-
tal, we define z(C(v;)) = x(C(v;—1)) and y(C(v;)) =

y(C(vi—1)) + 1. If it is vertical, we define x(C(v;)) =
2(C(vi—1)) + 1 and y(C(v;)) = y(C(vi—1)). The ob-
tained configuration is noncrossing because it proceeds
monotonically in x and y, with strict increase in one of
the coordinates. (]

We note that Observation [1] holds for any fixed-angle
orthogonal open chain which is not necessarily equilat-
eral.

In the HP model, the structure graph G = (V, E)
has its vertices bicolored by a color function w : V —
{H, P}. For a configuration C of an equilateral orthog-
onal linkage, a pair (u,v) of vertices forms an H—-H
contact if w(u) = w(v) = H, ||C(u) — C(v)|| =1, and
{u,v} ¢ E. The HP optimal folding problem of a
bicolored fixed-angle orthogonal equilateral chain asks
to find a noncrossing configuration of the linkage in 2D
that maximizes the number of H-H contacts.

A variant of the standard 3SAT problem is planar
3SAT, where the graph G, = (CUV, E) of the variable
set V and clause set C in a 3SAT formula ¢, with edges
between variables and the clauses that contain them,
has a planar embedding. We use a variant of planar
3SAT with additional planarity restrictions: if we add
edges to form a Hamiltonian cycle xk of C'UV that first
visits all elements of C' and then all elements of V', the
resulting graph G/¢> = G4 Uk must also be planar. The
linked planar 3SAT problem asks, given ¢, G4, and
K, whether ¢ is satisfiable. Pilz [8] proved this problem
NP-complete.

Figure 1: An example instance of linked planar 3SAT,
where ¢1 = (v V —w3 V —wy), ca = (vg V v3 V —01),
cs = (-w3 Vo), and ¢4 = (v1 V vy V v3). Hamiltonian
cycle k (drawn dotted) visits ¢1, ¢2, ¢3, ¢4, V1, U2, V3, V4 in
cyclic order.

3 Embedding Fixed-Angle Orthogonal Equilateral
Closed Chains is Strongly NP-complete

In contrast to Observation[I} not all fixed-angle orthog-
onal equilateral closed chains are “yes” instances of the
embedding problem. In particular, an orthogonal equi-
lateral closed chain must have an even number of edges
to have a configuration in 2D. Even with this property,
the length-8 chain (vg,v1,v2,vs, V4, Vs, Vg, U7,V = Vp)
with angles 0(vy) = 6(vg) = 180° and 0(v;) = 90° for
1=0,1,3,4,5,7 has configurations in 2D but they have
crossings at vertices vg and vg. It is not difficult to show
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that the embedding problem for fixed-angle orthogonal
closed chains is weakly NP-hard by a reduction from
the ruler folding problem (see [7, Chap. 2]); this con-
struction requires exponential edge lengths (or equilat-
eral chains with exponentially long straight sections).
In this section, we prove that the embedding problem is
strongly NP-complete:

Theorem 1 Embedding a fized-angle orthogonal equi-
lateral closed chain in 2D is strongly NP-complete.

Proof. (Outline.) Section 2] argued membership in NP.
To show NP-hardness, we reduce from the linked planar
3SAT problem. We are given a formula ¢, the associ-
ated graph G4, = (CUV, E), and a Hamiltonian path x
visiting ¢1,¢2, ..., Cm, V1,02, ..., Uy in cyclic order. Be-
cause G Uk is planar, there is a planar embedding with
the clauses ¢y, cs,..., ¢y along a single horizontal line
from left to right, and the variables vy, vs, ..., v, along
a lower horizontal line from right to left, as in Figure
but with edges routed via orthogonal paths. We can
find such an embedding in polynomial time. Note that
each edge is either interior or exterior to . We can
assume that every variable v; has an incident interior
edge and an incident exterior edge, by adding appropri-
ate always-satisfiable clauses (v; Vv; V —w;) to k so that
an edge to v; preserves planarity.

We construct four gadgets that we compose according
to the embedding of G4 and x: the clause gadget, hook
gadget, variable gadget, and frame gadget. Some gad-
gets assume pinned vertices that cannot move in the
plane; we will discuss why they are effectively pinned
when we combine the gadgets together.

Figure [2| illustrates the clause gadget. We call the
two gray vertices the “tabs” of this gadget. When black

pinned
X

tabs

(a) When black vertices are pinned and forced to turn down,
the two gray tabs can be placed in one of three places.

(b) Representative configurations (modulo reflection).

Figure 2: Clause gadget.

vertices are pinned and must turn downward, the tabs
have three locations they can be placed. When we
flip all vertices in the gadget along the horizontal line
through two black vertices, we have three other sym-
metric options above the horizontal line.

We surround each clause gadget with a hook gad-
get, as shown in Figure [3] which consists of an upper
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) Hook gadget with three options on the lower half.
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(b) Hook gadget with two options on the lower half and one
option on the upper half.

Figure 3: Two versions of the hook gadget. (Some ver-
tices are not drawn to simplify the figure.)
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half and a lower half to receive tabs of the clause gad-
get at distance 8 from the pinned vertices of the clause
gadget. Again we assume that both endpoints of these
upper and lower halves are pinned, which are depicted
by black vertices. We add long flaps beside the clause
gadget to prevent it from shifting vertically (relative to
the hook gadget). The hook gadget limits the clause to
three of its six options, which we arrange to be on the
upper or lower halves according to which incident edges
of the graph are exterior or interior to k respectively
(see Figure . We illustrate the two possibilities of this
split modulo reflectional symmetry.

In Figure the three upper options of the clause
are prevented by the upper half which is just a horizon-
tal line, which would cross the clause tabs if the tabs
were on the upper half. The lower half consists of three
subgadgets, each with their own pair of tabs. When the
clause gadget chooses one of the downward options for
its tabs, it forces the tabs of the corresponding subgad-
get to be extended down by 2 (to avoid crossing), while
the other tabs can remain retracted (which will always
be better for avoiding crossings). (The figure shows the
unused alternate state with dashed lines.) Each pair
of tabs in the hook gadget has distance more than 16
from the clause gadget, and the linkage to the tabs is
a doubled zig-zag; together, these guarantee that the
tabs of a hook gadget cannot be flipped up because this
would cross with the upper half. The doubled zig-zag
also prevents the tabs from flipping horizontally. Thus
each pair of tabs has exactly two placements (retracted
and extended) if the black vertices are pinned.

In Figure one lower option of the clause (the
middle) is prevented by the lower half being horizontal
there, while the corresponding upper option is allowed
by adding a subgadget to the upper half. Using the same
arguments, the pair of tabs of the subgadget on the up-
per half has two exactly placements: retracted and ex-
tended. When the clause gadget chooses the available
upper option, the pair of tabs of the subgadget is forced
to be extended up by 2, which is the opposite of each
subgadget on the lower half. Moreover, we arrange that
no pair of doubled zig-zag corridors to tabs have the
same height[T]

Figure [4] illustrates the variable gadget. The vari-
able gadget for a variable v consists of two zig-zag paths
of length 4k + 3, where k is the number of appearances
of v or —w as a literal in clauses. The two zig-zag paths
are joined by a horizontal baseline, which separates the
upper and lower zig-zag paths, forcing only two possi-
ble embeddings: the one in the figure and its reflection
through the baseline. Both zig-zag paths contain a hor-
izontal segment of length 4 for each appearance of the

LOtherwise, unexpected pairs of adjacent corridors may be
flipped. For example, consider the pair indicated by an arrow at
the top of Figure @ If these two corridors have the same height,
the linkage joining the pair can be flipped up locally.

Figure 4: A variable gadget for a variable v that appears
five times as v, —v, =, v, and v. The corresponding tabs
come from above, above, below, above, and below.

variable. The heights of the segments on the upper and
lower zig-zag paths, measured from the baseline, are ei-
ther 3 and —1 respectively, or 1 and —3 respectively.
Which option depends on whether the corresponding
literal uses the variable positive or negated, and on
whether the corresponding tab of the hook gadget comes
from above or below the variable gadget (which corre-
sponds to whether the tab is from the upper or lower
half of the clause/hook gadget, i.e., whether the graph
edge is exterior or interior to ). The heights are (1, —3)
if and only if either the literal is v and the tab comes
from above, or the literal is —v and the tab comes from
below; in Figure[d] these are the first, third, and fourth
pairs of horizontal segments. In the other cases, the
heights are (3, —1).

We arrange the variable gadgets with different heights
(see Figure @ so that the minimum vertical distance be-
tween two baselines of two variable gadgets is at least
4n. This minimum distance guarantees that no pair
of horizontal segments in variable gadgets for v; and
v; with ¢ # j has the same height, which may cause
an unexpected flip between them. In addition, our as-
sumption that every variable has connections to clauses
both above and below it means that there is a tab both
above and below the variable, forcing an approximately
correct height of the baseline.

The last gadget is the frame gadget, shown in Fig-
ure [5, which surrounds all other gadgets. For a given
closed chain, we consider the minimum rectangle that
contains but does not intersect the chain (one step out-
side the bounding box on all sides). Then we remove an

Figure 5: Frame gadget for closed chains.
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Figure 6: An example of the reduction from the instance in Figure|l} and the solution embedding corresponding to
assignment v; = true, vy = true, vs = true, and v4 = false, where clauses ¢y, co, c3, and ¢4 choose the variables vy,
v3, v1, and vy as their true literals, respectively. (Note: vertical distances between two gadgets are not to scale.)

extreme edge {u, v} in the gadgets, and attach the frame
gadget that essentially doubles the minimum rectangle,
as shown in Figure[s] The inside of the frame gadget in-
cludes the minimum rectangle, except for three edges, as
part of the chain. The doubling prevents any part of the
frame from being flipped with respect to the surrounded
gadgets. This frame also inhibits the surrounded gad-
gets from illegal flips to outside the minimum rectangleE]

Figure [6] shows how all the gadgets fit together for
the example instance from Figure [II We join together

all upper halves of hook gadgets for cy,co,...,cp; all
clause gadgets (and their flaps) for ¢, ¢p—1,...,c1; all
lower halves of the hook gadgets for ci,cs,...,cn; and

all variable gadgets for vy, vs,...,v,, in these orders.
Finally, we attach the frame gadget by replacing an edge

2In the most common case, including the example in Figure@
the frame is not necessary, as the hook gadgets will wrap around
both sides of the construction.

on a path joining the upper halves of the hook gadgets,
or an edge on a path joining the variable gadgetsE]

This reduction can be done in time polynomial in the
size of ¢. It remains to show that an instance (¢, G4, k)
of linked planar 3SAT is satisfiable if and only if the
resulting fixed-angle orthogonal equilateral closed chain
has a planar embedding. Due to the space limitation,
we only outline the proof.

When the linked planar 3SAT instance is satisfiable,
at least one literal of each clause is satisfied by the as-
signment. The clause gadget then chooses the corre-
sponding tabs of the corresponding hook gadget and
extends it, while retracting the other tabs. The ex-
tended tabs force the corresponding variable gadget to
take the true position, to avoid crossing. Because the
assignment is satisfiable, all variable gadgets can avoid

3We omit the case that no edge can be seen from the outside
of these gadgets.
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crossing with tabs. On the other hand, when the loop
has an embedding, all gadgets must be inside the frame
gadget. Each clause gadget then has to indicate some
tabs to be extended. Because the corresponding variable
does not have any crossings, the corresponding variable
satisfies the clause. Therefore, the instance of the linked
planar 3SAT is satisfiable. O

4 HP Optimal Folding a Fixed-Angle Orthogonal
Equilateral Open Chain is Strongly NP-complete

We now turn to orthogonal equilateral open chains in
the HP model, where the vertices are bicolored H or
P, and we wish to find a noncrossing configuration in
2D that maximizes the number of H-H contacts. In
this section, we prove that this problem is NP-complete,
despite the chain being open:

Theorem 2 HP optimal folding of a bicolored fized-
angle orthogonal equilateral open chain is strongly NP-
complete, even if the chain has just two H wvertices.

Proof. We use the same reduction in the proof of The-
orem |1}, except for the frame gadget, which we replace
with Figure [7] The inside of the frame gadget covers
the minimum rectangle except two edges, but now the
bottom doubled edge extends very far to the left, more
than 10 times the total length L of all other gadgets.
The leftmost two vertices of the bottom doubled edge
are H (and the chain is not closed there), and all other
vertices in the chain are P.

Gadgets of
total length L

Figure 7: A frame gadget for an HP chain. The two H
vertices are drawn red at the far left.

This reduction can be done in polynomial time. Thus
it suffices to show that this arrangement of the frame is
the only way to obtain the H-H contact at the two H
vertices. Because the total length of the gadgets inside
of the frame is at most L, we must arrange the two
long segments attached to the H vertices in parallel as
shown in the figure to make the H-H contact. Thus we
must put all other gadgets inside the frame, and hence
correctness follows from the proof of Theorem O

5 Packing Fixed-Angle Orthogonal Equilateral Open
Chains into Squares is Strongly NP-complete

We now address some of the open questions from [IJ.
First, the authors ask whether a fixed-angle orthogonal

equilateral open chain (or in their terminology, an S-T
sequence of squares, where each S square must continue
straight and each T square must turn left or right) can
be packed into a 2D square. Second, they ask whether
the problem remains hard when the chain occupies a
small fraction of the volume of the target shape. (They
ask this question for the 3D version of the problem, but
it naturally extends to the 2D version we consider.) We
answer both questions by showing that packing a fixed-
angle orthogonal equilateral open chain of length O(s)
into an s x s square is strongly NP-complete. This result
is tight up to constant factors: if the chain has length
< s, then it can be packed into an s X s square via
Observation [1I

Theorem 3 Embedding a given fized-angle orthogonal
equilateral open chain into an s X s square is strongly
NP-complete, even if the chain has length O(s).

Proof. We use the same reduction in the proof of The-
orem [2] except for the frame gadget, which we replace
with Figure

10L+1

Gadgets of

total length L

o0

10L+1

Figure 8: A frame gadget for an open chain which must
fit in a 10L + 1 by 10L 4 1 square.

This frame gadget starts the chain with two connected
segments of length s. Any embedding into the s x s
square must place these segments along two boundary
edges of the square, say left and bottom as in the fig-
ure. The next two segments on the outside of the frame
gadget must turn left to remain within the square. At
the other end of the chain, we have a vertical (by par-
ity) segment of length s — 1 and a horizontal segment
of length > 9L, which forces these segments against the
first two segments. With these segments in place, the
prior argument ensures that the rest of the frame and
thus the rest of the gadgets are correctly placed.

The chain has length at most 47L + 6 vertices (from
the SAT gadgets, the smaller frame, and the three long
bars). Thus the length | = O(s). O

It remains open whether the problem of densely pack-
ing a fixed-angle orthogonal equilateral open chain of



CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

length s? into an s x s square is NP—completeH The
analogous problem in 3D is strongly NP-complete [1].
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