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Abstract

Solving and designing puzzles, creating sculpture and architecture, and inventing magic tricks
all lead to fun and interesting algorithmic problems. This paper describes some of our explo-
rations into these areas.

1. Puzzles

Solving a puzzle is like solving a research problem. Both require the right cleverness
to see the problem from the right angle, and then explore that idea until you find
a solution. The main difference is that the puzzle poser usually guarantees that the
puzzle is solvable.

1.1. Sliding Coins

A sliding-coin puzzle consists of two arrangements of coins on a common grid, as in
Figure 1. The goal is to reconfigure one arrangement into the other via a sequence of
moves. In each move, the player can move any coin to any grid position that is adjacent
(along the grid) to at least two other coins. The coins may be labeled to distinguish
which coins should go where, while other groups of coins may be considered identical.

Unlike many puzzles which are NP-hard or worse, the majority of sliding-coin
puzzles on the square and triangular grids can be solved (or determined unsolvable) in
polynomial time [DDV02]. In particular, these puzzles have polynomial-length solu-
tions. What seems to make these puzzles nonetheless challenging for humans to solve
is that the polynomials can be large—Θ(n3) for n coins on the square grid [DDV02].
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Figure 1: A difficult sliding-coin puzzle with coins that spell ALGORITHM: can you
reconfigure the coins from the left arrangement to the right arrangement, at each step
moving a coin to a grid position adjacent to at least two other coins?

This algorithmic understanding gives us a lot of insight into sliding-coin puzzle
design, which was our original motivation for this work. In particular, there are sim-
ple conditions on what puzzles are solvable, enabling the puzzle designer to be sure
that a puzzle is solvable without having to explicitly try it. What is more, the study of
the asymptotic number of moves required for a few types of puzzles gives the designer
a rough understanding of what puzzles are hard. In particular, we know the asymp-
totically “hardest” puzzle, in the sense of requiring the most moves. For example,
the puzzle in Figure 1 should be of an intermediate difficulty—the number of moves
grows as Θ(n2) instead of Θ(n3)—though at this scale the solution is probably quite
long.

1.2. Map Folding

Map folding is a problem frequently encountered during road trips. One mathematical
formulation of this problem is that you are given a rectangular grid of squares, where
each edge is a crease marked either mountain or valley, and the goal is to fold the
map adhering to all of the crease directions. (In particular, all of the creases must be
folded.) In most real maps, the folding is achieved by a sequence of simple folds,
each of which folds along a single line. In this case, the map-folding puzzle can be
solved in polynomial time, indeed roughly linear time [ABD+]. However, if the map
has diagonal creases, the problem becomes NP-hard [ABD+].

A different kind of map-folding puzzle arises when we allow general origami fold-
ings, which fold along multiple creases at once, instead of just simple folds. Mathe-
matically, we can model origami foldings as simply specifying a valid ordering of all
the squares in the grid, valid in the sense that it leads to a non-self-intersecting folded
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state of the map. Physically executing such a folding can be a challenging puzzle. For
example, try folding the map in Figure 2 so that the squares are stacked in order to
spell ALGORITHM.
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Figure 2: A challenging map-folding puzzle: can you fold the 3 × 3 map so that
reading the squares in their folded stacking order spells the word ALGORITHM?

Even more challenging puzzles arise when the puzzler is told only partial infor-
mation about the desired origami folding. For example, it may be NP-hard to decide
whether there is a folding consistent with a specified mountain-valley assignment.
This problem was posed by Jack Edmonds1.

We implemented a computer program that considers all 1,368 valid folded state
orderings of a 3×3 map, and displays their appearance on either side when the squares
have specified labels and holes that show through to the square behind. This tool
allowed us to design a puzzle based on constraining the two visible sides (making
it easier to verify visually that a solution is correct) while still guaranteeing that the
solution folding is unique. See Figure 3.
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Figure 3: A challenging map-folding puzzle: can you fold the 3 × 3 map so that
both sides read FUN? Label both sides of the map as shown, and cut out the shaded
rectangles.

1Personal communication, 1997.
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2. Art

Elegant algorithms are beautiful. A special treat is when that beauty translates visually.
Sometimes this is by design, when you develop an algorithm to compose artwork
within a particular family. Other times the visual beauty of an algorithm just appears,
without anticipation.

2.1. Hyparhedra

If you crease a square of paper along several concentric squares, alternating mountain
and valley, and along the diagonals, the paper relaxes into a pleated form as shown in
Figure 4. We call this pleated folding a hypar, short for “hyperbolic paraboloid”, the
mathematical surface that it approximates.

→

Figure 4: Folding a square of paper into a hypar.

We began experimenting with gluing multiple hypars along their edges. There are
many possible ways to glue together complex arrangements of hypars. One particu-
larly interesting family of gluings comes from an algorithm that converts any poly-
hedron into a hypar gluing [DDL99]. The resulting hyparhedra are attractive paper
sculptures. Figure 5 shows one example, resulting from the cube as input.

2.2. Voronoi Architecture

One of our collaborations with MIT’s Department of Architecture [ACD+03] explored
the use of Voronoi diagrams in architectural design. The particular setting we consid-
ered was a museum for the work of Nam Jun Paik, a pioneer of video art.

We can think of the Voronoi diagram as an algorithm whose input is a set of points
in 2D/3D and whose output is a decomposition of 2D/3D into polygonal/polyhedral
cells, one for each input point. The cell corresponding to each input point is the region
of 2D/3D points for which that input point is the nearest among all input points. The
Voronoi diagram can also be thought of as the result of cellular growth from each of
the input points, and the cell decompositions consequently have an organic sense.
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Figure 5: Hyparhedron sculpture resulting from the algorithm in [DDL99] applied to
a cube.

Our main challenge was how to give the architects enough control over the Voronoi
diagram for the cell decomposition to be meaningful as a structural element of the
building. The difficulty is that manipulation of a Voronoi diagram is indirect: you
can only change the input points. In 2D, the mapping from input points to cells is
sufficiently natural and well-behaved that control comes relatively easily. In 3D, how-
ever, the process becomes substantially more complicated. For example, a building
requires roughly horizontal surfaces for the floor and roof. How should we choose a
set of points to guarantee such surfaces? One effective approach we found for generat-
ing one such surface is to design a set of points in 3D but roughly following a desired
shape (e.g., a plane), and then copy each point with a random but small vertical offset
and optionally with a small random horizontal offset. This input of pairs of points
tends to produce only infinite cells, with the facets in between forming a kind of shell
surface.

2.3. Hinged Blocks

A hinged dissection is a collection of 2D/3D shapes hinged together at vertices or
edges in such a way that the linkage can be folded to form two or more solid 2D/3D
shapes. While many hinged dissections between various pairs of shapes have been
designed [Fre02], it remains open whether every pair of equal-area 2D polygons have
a hinged dissection. The broadest family of 2D hinged dissections is based on poly-
forms [DDE+]; in particular, this family includes a hinged dissection, for each n ≥ 1,
that folds into all connected edge-to-edge joinings of n unit squares (polyominoes of
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size n). This result was recently generalized to 3D shapes [DDLS04], in particular
establishing an edge-hinged dissection, for each n ≥ 1, that folds into all connected
face-to-face joinings of n unit cubes (polycubes of size n). The pieces in this dis-
section can even be constrained to be cubes themselves, in which case the number of
pieces is 8n = 23

n.
This last result was recently applied in a collaboration with artist Laurie Palmer to

a sculpture called The Helium Stockpile, shown in Figure 6. Her sculpture consists of
about 1000 identical blocks hinged together in groups of 8. Each group can fold into a
2×2×2 “macroblock” or various other shapes. If the groups were connected together
in one chain, the assembly could fold into any polymacroblock of size around 125.
Visitors are encouraged to manipulate, experiment, and interact with the sculpture.

Figure 6: Laurie Palmer’s The Helium Stockpile.

3. Magic

Mathematics is the basis for many magic tricks, particularly “self-working” tricks.
One of the key people at the intersection of mathematics and magic is Martin Gardner,
whose work has inspired much of what we write about in this paper. Algorithmically,
our goal is to automatically design magic tricks within a particular family.
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3.1. One-Cut Hell

A classic paper-folding magic trick goes something like this. Two people, Good and
Evil, die and arrive at the gates of heaven. Only Good has a ticket to enter heaven.
Evil begs Good for help, so Good folds his ticket as shown in Figure 7, rips along a
line, and hands Evil the smaller pieces. Unsure of what to do with the pieces, Evil
hands them to St. Peter, who re-arranges them to spell H-E-L-L, to which Evil is
appropriately directed. Good hands the remaining piece to St. Peter, who is pleased to
unfold a cross.

Figure 7: Classic method for producing cross and multipiece H-E-L-L.

This trick is a special case of a general algorithmic result: any desired collection
of line segments can be simultaneously cut by folding flat and making one complete
straight cut [DDL98]. Applying this algorithm, you can fold a square of paper flat
and make one cut to produce the silhouette of a swan, an angelfish, or a butterfly;
or produce your initials; or in principle produce any desired collection of polygonal
shapes. In particular, we have applied this result to make a more precise form of the
Good-and-Evil magic trick described above [DD], where each letter is a single piece.
See Figure 8. The folding is more complicated, and the pieces are not in perfect
proportion, but there is a certain elegance to having exactly the five desired pieces.

7



FUN with Algorithms

Figure 8: Five-piece design for cross and H-E-L-L from [DD]. Fold in half first, then
use the specified creases.

3.2. Picture Hanging

The magician can hang a picture on two nails in such a way that, no matter which nail
you choose to remove, the picture falls. This topological curiosity has circulated the
puzzle community in the past few years. Looking in the problem at the right way, the
two-nail picture hanging is precisely the Borromean rings, three interlocked loops no
two of which are interlocked. Recently, this mathematical trick has been generalized
to arbitrary feats [DDM+04]. For example, a picture can be hung on n nails such
that removing any k nails causes the picture to fall, but removing fewer nails leaves
it hanging, for any 1 ≤ k ≤ n. Even more, a picture can be hung on n red nails and
n blue nails such that removing k nails of each color causes the picture to fall, but
removing fewer of either color leaves it hanging. These results connect the otherwise
disparate fields of puzzles and magic, algebra and topology, and monotone function
theory.
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