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Abstract. We present a fixed-parameter algorithm that constructively
solves the k-dominating set problem on graphs excluding one of K5 or
K33 as a minor in time O(416‘5‘/Eno(1)), which is an exponential factor
faster than the previous O(2°®n°W) In fact, we present our algorithm
for any H-minor-free graph where H is a single-crossing graph (can be
drawn in the plane with at most one crossing) and obtain the algorithm
for K3 3(Ks)-minor-free graphs as a special case. As a consequence, we
extend our results to several other problems such as vertex cover, edge
dominating set, independent set, clique-transversal set, kernels in di-
graphs, feedback vertex set and a series of vertex removal problems. Our
work generalizes and extends the recent result of exponential speedup in
designing fixed-parameter algorithms on planar graphs by Alber et al. to
other (nonplanar) classes of graphs.

1 Introduction

According to a 1998 survey book [19], there are more than 200 published research
papers on solving domination-like problems on graphs. Since this problem is very
hard and NP-complete even for special kinds of graphs such as planar graphs,
much attention has focused on solving this problem on a more restricted class of
graphs. It is well known that this problem can be solved on trees [10] or even the
generalization of trees, graphs of bounded treewidth [26]. The approximability
of the dominating set problem has received considerable attention, but it is not
known and it is not believed that this problem has constant factor approximation
algorithms on general graphs [5].
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Downey and Fellows [14] introduced a new concept to handle NP-hardness
called fized-parameter tractability. Unfortunately, according to this theory, it is
very unlikely that the k-dominating set problem has an efficient fixed-parameter
algorithm for general graphs. In contrast, this problem is fixed-parameter tractable
on planar graphs. The first algorithm for planar k-dominating set was developed
in the book of Downey and Fellows [14]. Recently, Alber et al. [1] demonstrated a
solution to the planar k-dominating set in time O(46V3%n) (for an improvement
of this result, proposed by Kanj and Perkovié, see [20]). Indeed, this result was
the first nontrivial result for the parameterized version of an NP-hard problem
where the exponent of the exponential term grows sublinearly in the parameter.
One of the aims of this paper is to generalize this result to nonplanar classes of
graphs.

A graph G is H-minor-free if H cannot be obtained from any subgraph of
G by contracting edges. A graph is called a single-crossing graph if it can be
drawn in the plane with at most one crossing. Similar to the approach of Alber
et al., we prove that for a single-crossing graph H, the treewidth of any H-minor-
free graph G having a k-dominating set is bounded by O(Vk). As a result, we
generalize current exponential speedup in fixed-parameter algorithms on planar
graphs to other kinds of graphs and show how we can solve the k-dominating set
problem on K3 s-minor-free or Ks-minor-free graphs in time 0(416'5‘/En0(1)).
The genesis of our results lies in a result of Hajiaghayi et al. [18] on obtaining
the local treewidth of the aforementioned class of graphs. The classes of K3 3-
minor-free graphs and Ks-minor-free graphs have been considered before, e.g.
in [22,27].

Using the solution for the k-dominating set problem on planar graphs, Kloks
et al. [9,17,23,24] and Alber et al. [1, 2] obtained exponential speedup in solving
other problems such as vertex cover, independent set, clique-transversal set,
kernels in digraph and feedback vertex set on planar graphs. In this paper we
also show how our results can be extended to these problems and many other
problems such as variants of dominating set, edge dominating set and a series
of vertex removal problems. The reader is referred to [12] for the full proofs of
theorems in this paper.

2 Background

We assume the reader is familiar with general concepts of graph theory such as
(un)directed graphs, trees and planar graphs. The reader is referred to standard
references for appropriate background [8]. In addition, for exact definitions of
various NP-hard graph-theoretic problems in this paper, the reader is referred
to Garey and Johnson’s book on computers and intractability [16].

Our graph terminology is as follows. All graphs are finite, simple and undi-
rected, unless indicated otherwise. A graph G is represented by G = (V, E),
where V' (or V(G)) is the set of vertices and E (or E(G)) is the set of edges.
We denote an edge e in a graph G between u and v by {u,v}. We define n to be
the number of vertices of a graph when it is clear from context. We define the



r-neighborhood of a set S C V(G), denoted by N[ (S), to be the set of vertices at
distance at most r from at least one vertex of S C V(G); if S = {v} we simply
use the notation N[ (v). The union of two disjoint graphs G; and G2, G1 U Go,
is a graph G such that V(G) = V(G1) UV (G2) and E(G) = E(G1) U E(G2).

For generalizations of algorithms on undirected graphs to directed graphs, we
consider underlying graphs of directed graphs. The underlying graph of a directed
graph H is the undirected graph G in which V(G) = V(H) and {u,v} € E(G)
if and only if (u,v) € E(H) or (v,u) € E(H).

Contracting an edge e = {u, v} is the operation of replacing both u and v by
a single vertex w whose neighbors are all vertices that were neighbors of u or
v, except u and v themselves. A graph G is a minor of a graph H if H can be
obtained from a subgraph of G by contracting edges. A graph class C is a minor-
closed class if any minor of any graph in C is also a member of C. A minor-closed
graph class C is H-minor-free if H ¢ C. For example, a planar graph is a graph
excluding both K33 and K5 as minors.

A tree decomposition of a graph G = (V, E), denoted by TD(G), is a pair
(x,T) in which T = (I, F) is a tree and x = {x;|i € I'} is a family of subsets of
V(G) such that:

1. Uie[ xi =V;
2. Ve—{uw}ep there exists an ¢ € I such that both u and v belong to x;; and
3. Vyev, the set of nodes {i € I|v € x;} forms a connected subtree of T.

3 General results on clique-sum graphs

Suppose G and G4 are graphs with disjoint vertex-sets and k > 0 is an integer.
For i = 1,2, let W; C V(G;) form a clique of size k and let G} (i = 1,2) be
obtained from G; by deleting some (possibly no) edges from G;[W;] with both
endpoints in W;. Consider a bijection h : W7 — W,. We define a k-sum G of
G1 and Ga, denoted by G = G By G or simply by G = G1 & Gs, to be the
graph obtained from the union of G} and G4 by identifying w with h(w) for all
w € Wi. The images of the vertices of W1 and W5 in G &, G2 form the join set.
In the rest of this section, when we refer to a vertex v of G in G or G2, we mean
the corresponding vertex of v in G or G (or both). It is worth mentioning that
@ is not a well-defined operator and it can have a set of possible results.

Let s be an integer where 0 < s < 3 and C be a finite set of graphs. We say
that a graph class G is a clique-sum class if any of its graphs can be constructed
by a sequence of i-sums (¢ < s) applied to planar graphs and graphs in C. We
call a graph clique-sum if it is a member of a clique-sum class. We call the pair
(C, s) the defining pair of G and we call the maximum treewidth of graphs in C
the base of G and the base of graphs in G. A series of k-sums (not necessarily
unique) which generate a clique-sum graph G are called a decomposition of G
into clique-sum operations.

According to the result of [25], if G is the class of graphs excluding a single
crossing graph (can be drawn in the plane with at most one crossing) H then G
is a clique-sum class with defining pair (C, s) where the base of G is bounded by



a constant cy depending only on H. In particular, if H = K3 3, the defining pair
is ({K5},2) and ¢y = 4 [28] and if H = K35 then the defining pair is ({Vs},3)
and cy = 4 [28]. Here by V5 we mean the graph obtained from a cycle of length
eight by joining each pair of diagonally opposite vertices by an edge. For more
results on clique-sum classes see [13].

From the definition of clique-sum graphs, one can observe that, for any clique-
sum graph G which excludes a single crossing graph H as a minor, any minor
G’ of G is also a clique-sum graph which excludes the same graph H as a minor.

We call a clique-sum graph class G a-recognizable if there exists an algorithm
that for any graph G € G outputs in O(n®) time a sequence of clique sums of
graphs of total size O(|V (G)|) that constructs G. We call a graph a-recognizable
if it belongs in some a-recognizable clique-sum graph class. Using the results
in [21] and [4] one can verify the following.

Theorem 1 ([21,4]). The class of K5-minor-free (K3 3-minor-free) graphs is
a 2-recognizable (1-recognizable) clique-sum class.

A parameterized graph class (or just graph parameter) is a family F of classes
{Fi,i > 0} where |J,~,Fi is the set of all the graphs and for any i > 0,
F; C Fiy1. Given two parameterized graph classes F' and F? and a natural
number v > 1 we say that F! <y F?if for any i >0 , .7-'1»1 - .7-',3,1».

In the rest of this paper, we will identify a parameterized problem with the
parameterized graph class corresponding to its “yes” instances.

Theorem 2. Let G be an a-recognizable clique-sum graph class with base ¢ and
let F be a parameterized graph class. In addition, we assume that each graph in
G can be constructed using i-sums where i < s < 3. Suppose also that there exist
two positive real numbers (31, Bo such that:

(1) For any k > 0, planar graphs in Fy, have treewidth at most BiVk + B2 and
such a tree decomposition can be found in linear time.
(2) For any k >0 and any i < s, if G1 ®; G2 € Fy, then G1,G2 € Fy,

Then, for any k > 0, the graphs in GNFy, all have treewidth < max{31vk+ (2, ¢}
and such a tree decomposition can be constructed in O(n® + (\/E)s -n) time.

Theorem 3. Let G be a graph class and let F be some parameterized graph
class. Suppose also for some positive real numbers «, 81, B2, d the following hold:

(1) For any k > 0, the graphs in GNFy, all have treewidth < f1\Vk+ B2 and such
a tree decomposition can be decided and constructed (if it exists) in O(n®)
time. We also assume testing membership in G takes O(n®) time.

(2) Given a tree decomposition of width at most w of a graph, there exists an
algorithm deciding whether the graph belongs in Fy, in O(6%'n) time.

Then there exists an algorithm deciding in O(5% VitBay 4 n®) time whether an
input graph G belongs in G N F.



It is worth mentioning that Demaine et al. [11] very recently designed a
polynomial-time algorithm to decompose any H-minor-free graph, where H is a
single-crossing graph, into clique-sum operations. Thus O(n?) is polynomial for
these H-minor-free graphs.

4 Fixed-parameter algorithms for dominating set

In this section, we will describe some of the consequences of Theorems 2 and 3
on the design of efficient fixed-parameter algorithms for a series of parameterized
problems where their inputs are clique-sum graphs.

A dominating set of a graph G is a set of vertices of G such that each of
the rest of vertices has at least one neighbor in the set. We represent the k-
dominating set problem with the parameterized graph class DS where DS}, con-
tains graphs which have a dominating set of size < k. Our target is to show how
we can solve the k-dominating set problem on clique-sum graphs, where H is
a single-crossing graph, in time O(cﬂno(l)) instead of the current algorithms
which run in time O(c*n®™M) for some constant c. By this result, we extend the
current exponential speedup in designing algorithms for planar graphs [2] to a
more generalized class of graphs. In fact, planar graphs are both K3 3-minor-free
and Ks-minor-free graphs, where both K33 and K5 are single-crossing graphs.

According to the results in [20], condition (1) of Theorem 2 is satisfied for
DS for 1 = 16.5 and [z = 50. Also, the next lemma shows that condition (2)
of Theorem 2 is also correct.

Lemma 1. If G = G1 8, G2 has a k-dominating set, then both G1 and G2 have
dominating sets of size at most k.

We can now apply Theorem 2 for 8, = 16.5 and 3 = max{50, c}.

Theorem 4. If G is an a-recognizable clique-sum class of base ¢, then any mem-
ber G of G where its dominating set has size at most k has treewidth at most
16.5vk + max{50, c} and the corresponding tree decomposition of G can be con-
structed in O(n®) time.

Theorem 4 tells us that condition (1) of Theorem 3 is satisfied. Moreover,
according to the results in [1, 3] condition (2) of Theorem 3, is satisfied for the
graph parameter DS when § = 4. Applying now theorems 3 and 4 we have the
following.

Theorem 5. There is an algorithm that in 0(416'5‘/En+na) time solves the k-
dominating set problem for any a-recognizable clique-sum graph. Consequently,
there is an algorithm that in O(4'6-5VEn) (O(416-5Vkn 4 n2)) time solves the
k-dominating set problem for Ks 3 (K5 )-minor-free graphs.



5 Algorithms for parameters bounded by dominating set
number

We provide a general methodology for deriving fast fixed-parameter algorithms
in this section. First, we consider the following theorem which is an immediate
consequence of Theorem 3.

Theorem 6. Let G be a graph class and let F*, F? be two parameterized graph
classes where F* <y F? for some natural number v > 1. Suppose also that there
exist positive real numbers «, 81, B2, such that:

(1) For any k > 0, the graphs in GNF? all have treewidth < BiVE+ By and such
a tree decomposition can be decided and constructed (if it exists) in O(n®)
time. We also assume testing membership in G takes O(n®) time.

(2) There exists an algorithm deciding whether a graph of treewidth < w belongs
in Fp in O(6%n) time.

Then:

(1) For any k > 0, the graphs in G N F} all have treewidth at most B1+/7vk + B2
and such a tree decomposition can be constructed in O(n®) time.

(2) There exists an algorithm deciding in O(6°V7*+82pn 4 n®) time whether an
input graph G belongs in G N FL.

The idea of our general technique is given by the following theorem that is a
direct consequence of Theorems 4 and 6.

Theorem 7. Let F be a parameterized graph class satisfying the following two
properties:

(1) It is possible to check membership in Fy of a graph G of treewidth at most
w in O(0%n) time for some positive real number 0.

(2) F <4 DS.
Then:

(1) Any clique sum graph G of base c in Fy, has treewidth at most max{16.5v/vk+
50, c}.

(2) We can check whether an input graph G is in Fy in O(8195V7Fn 4 no) 1 on
an a-recognizable clique-sum graph of base c.

Theorem 7 applies for several graph parameters. In particular it can be ap-
plied for the k-weighted dominated set problem, the k-dominating set problem
with property II, the Y-domination problem, the k-vertex cover problem, the
k-edge dominating set problem, the k-edge trasversal set problem, the mini-
mum maximum matching problem, the k-kernel problem in digraphs and the
k-independent set problem. For more details on the analysis of each of these
problems, see [12].

! In the rest of this paper, we assume that constants, e.g. ¢, are small and they do not
appear in the powers, since they are absorbed into the O notation.



6 Fixed-parameter algorithms for vertex removal
problems

For any graph class G and any nonnegative integer k the graph class k-almost (G)
contains any graph G = (V| E) where there exists a subset S C V(G) of size at
most k such that G[V — S] € G. We note that using this notation if G contains
all the edgeless graphs or forests then k-almost(G) is the class of graphs with
vertex cover < k or feedback vertex set < k.

A graph G = (V, E) has a k-cut S C V when G[V — §] is disconnected and
|S| = k. Let G1, G2 be two of the connected components of G[V — S]. Given a
component G; = (V1, Eq) of G[V — S] we define its augmentation as the graph
G[V4 U S] in which we add all edges among vertices of S. We say a k-cut S
minimally separates G1 and G4 if each vertex of S has a neighbor in G; and Gs.
A graph G = (V, E) has a strong k-cut S C V if |S| = k and G[V — S] has at
least k connected components and each pair of them is minimally separated by
S. We say that G is the result of the multiple k-clique sum of G1,... ,G, with
respect to some join set W if G = G @y, - - - ® G- where the join set is always
W and such that W is a strong k-cut of G.

Lemma 2. Let k be a positive integer and let G be a graph with a strong k-cut
S where 1 < k. Then the treewidth of G is bounded above by the mazximum of
the treewidth of each of the augmented components of G after removing S.

Lemma 3. Let G = (V, E) be a graph with a strong k-cut S where 1 < k < 3.
Then if G belongs to some minor-closed graph class G then any of the augmented
components of G after removing S is also k-connected and belongs to G.

We now need the following adaptation of the results of [21] and [4] (Theo-
rem 1).

Lemma 4. Let G be a connected K3 3-free graph and let S be the set of its strong
i-cuts, 1 <1 < 2. Then G can be constructed after a sequence of multiple i-clique
sums, 1 < i < 2, applied to planar graphs or Ks5’s where each of these multiple
sums has a member of S as join set. Moreover this sequence can be constructed
by an algorithm in O(n) time.

Lemma 5. Let G be a connected Ks5-free graph and let S be the set of its strong
i-cuts, 1 <1 < 3. Then G can be constructed after a sequence of multiple i-clique
sums, 1 < i < 3, applied to planar graphs or Vg’s where each of these multiple
sums has a member of S as join set. Moreover this sequence can be constructed
by an algorithm in O(n?) time.

Theorem 8. Let G be a Ks3(Ks5)-minor-free graph class and let F be any
minor-closed parameterized graph class. Suppose that there exist real numbers
Bo > 4,61 such that any planar graph in Fy, has treewidth at most S1\Vk + Bo
and such a tree decomposition can be found in linear time. Then graphs in GNFy

all have treewidth < B1Vk+ o and such a tree decomposition can be constructed
in O(n) (O(n?)) time.



We define 7,. to be the class of graphs with treewidth < r. It is known that
for 1 <1 <2, 7; is exactly the class of K;o-minor-free graphs.

Lemma 6. Planar graphs in k-almost (T3 ) have trecwidth < 16.5v/k+50. More-
over, such a tree decomposition can be found in linear time.

We conclude the following general result:

Theorem 9. Let G be any class of graphs with treewidth < 2. Then any K3 3 (K5 )-
minor-free graph in k-almost (G) has treewidth < 16.5vk +50. Moreover, such a
tree decomposition can be found in O(n) (O(n?)) time.

Combining Theorems 3 and 9 we conclude the following.

Theorem 10. Let G be any class of graphs with treewidth < 2. Suppose also
that there exists an O(8“n) algorithm that decides whether a given graph belongs
in k-almost(G) for graphs of treewidth at most w. Then, one can decide whether

a K3 3(K5)-minor-free graph belongs in k-almost(G) in time 0(516'5\/En +n%).

If {O1,...,0,} is a finite set of graphs, we denote as minor-excl(Oy, ... ,0,)
the class of graphs that are O;-minor-free for i = 1,... ,r.

As examples of problems for which Theorems 9 and 10 can be applied, we
mention the problems of checking whether a graph, after removing k vertices,
is edgeless (G = Tp), or has mazimum degree < 2 (G = minor-excl(K} 3)),
or becomes a a star forest (G = minor-excl(K3, P3)), or a caterpillar (G =
minor-excl( K3, subdivision of K 3)), or a forest (G = Ty), or outerplanar (G =
minor-excl(Ky, K2 3)), or series-parallel, or has treewidth < k (G = T3).

We consider the cases where G = 75 and G = 7. In particular we prove the
following (for details, see [12]).

Theorem 11. For any K3 3 (K5 )-minor-free graph G the following hold.

(1) If G has a feedback vertex set of size at most k then G has treewidth at most
16.5V/k + 50.

(2) We can check whether G has a feedback vertex set of size < k in O(cflvﬁs's\/gn—i—
n) (O(cflvi"r”/gn +n?)) time, for some small constant ceys.

(8) If G has a vertex cover of size at most k then G has treewidth at most
4V3VE +5.

(4) We can check whether G has a vertez cover of size < k in O(2*3VFn 4 n)
(0(2%3VEn 4 n2)) time.

(5) We can check whether G has a vertex cover of size < k in 0(24‘/§‘/%k+kn+n)
(O(23VFE + kn 4 n?)) time.

7 Further extensions

In this section, we obtain fixed-parameter algorithms with exponential speedup
for k-vertex cover and k-edge dominating set on graphs more general than



K3 3(K5)-minor-free graphs. Our approach, similar to the Alber et al.’s ap-
proach [2], is a general one that can be applied to other problems.

Baker [6] developed several approximation algorithms to solve NP-complete
problems for planar graphs. To extend these algorithms to other graph families,
Eppstein [15] introduced the notion of bounded local treewidth, defined formally
below, which is a generalization of the notion of treewidth. Intuitively, a graph
has bounded local treewidth (or locally bounded treewidth) if the treewidth of
an r-neighborhood of each vertex v € V(G) is a function of r, » € N, and not
V(G)I.

The local trecwidth of a graph G is the function Itw® : N — N that associates
with every » € N the maximum treewidth of an r-neighborhood in G. We set
tw%(r) = max,cy () {tw(G[NG(v)])}, and we say that a graph class C has
bounded local treewidth (or locally bounded treewidth) when there is a function
f: N — N such that for all G € C and 7 € N, Itw’(r) < f(r).

A graph is called an apex graph if deleting one vertex produces a planar
graph. Eppstein [15] showed that a minor-closed graph class £ has bounded
local treewidth if and only if £ is H-minor-free for some apex graph H.

So far, the only graph classes studied with small local treewidth are the class
of planar graphs [15] and the class of clique-sum graphs, which includes minor-
free graphs like K3 s-minor-free or Ks-minor-free graphs [18]. It has been proved
that for any planar graph G, ltw® (k) < 3k — 1 [18], and for any K3 s-minor-free
or Ks-minor-free graph G, lth(k) < 3k + 4 [15]. For these classes of graphs,
there are efficient algorithms for constructing tree decompositions.

Eppstein [15] showed how the concept of the kth outer face in planar graphs
can be replaced by the concept of the kth layer (or level) in graphs of locally
bounded treewidth. The kth layer (Ly) of a graph G consists of all vertices at
distance k from an arbitrary fixed vertex v of V(G). We denote consecutive layers
from i to j by Li, j] = Ui<k<;Ly.

Here we generalize the concept of layerwise separation, introduced in Alber
et al.’s work [2] for planar graphs, to general graphs.

Let G be a graph layered from a vertex v, and r be the number of layers. A
layerwise separation of width w and size s for G is a sequence (S, 52, ,S;)
of subsets of V| with property that S; C U;J;(iw_l) L;; S; separates layers L;
and Liy,; and 375, [S5] < s.

A parameterized problem P has Layerwise Separation Property (LSP) of
width w and size-factor d, if for each instance (G, k) of the problem P, graph G
admits a layerwise separation of width w and size dk.

For example, we can obtain constants w = 2 and d = 2 for the vertex
cover problem. In fact, consider a k-vertex cover C on a graph G and set S; =
(L; ULjy1) N C. The S;’s form a layerwise separation. Similarly, we can get
constants w = 2 and d = 2 for the edge dominating set problem.

Lemma 7. Let P be a parameterized problem on instance (G, k) that admits a
problem kernel of size dk. Then the parameterized problem P on the problem
kernel has LSP of width 1 and size-factor d.



In fact, using Lemma 7 and the problem kernel of size 2k for the vertex cover
problem, this problem has the LSP of width 1 and size-factor 2.

The proof of the following theorem is very similar to the proof of Theorem 14
of Alber et al.’s work [2] and hence omitted.

Theorem 12. Suppose for a graph G, ltWG(r) < cr+d and a tree decomposition
of width ch + d can be constructed in O(n®) for any h consecutive layers (h is
a constant). Also assume G admits a layerwise separation of width w and size
dk. Then we have tw(G) < 2v/6dk + cw + d. Such a tree decomposition can be
computed in time O(n®).

Now, since for any H-minor-free graph G, where H is a single-crossing graph,
tw® (1) < 3r+ ¢y and tw(L[i, j]) < 3(j —i+1) +cx [18], we have the following.

Corollary 1. For any H-minor-free graph G, where H is a single-crossing graph,
that admits a layerwise separation of width w and size dk, we have tw(G) <
2v6dk + 3w + cy.

Since we can construct the aforementioned kind of tree decompositions for
K3 3(K5)-minor-free graphs in O(n)(O(n?)) and their local treewidth is 3r + 4
[18], the following result follows immediately.

Corollary 2. For any Ks3(Ks5)-minor-free graph G, that admits a layerwise
separation of width w and size dk, we have tw(G) < 2v6dk + 3w + 4. Such a
tree decomposition can be computed in time O(n) (O(n?)).

In fact, we have this general theorem.

Theorem 13. Suppose for a graph G, ltWG(r) < cr+d and a tree decomposition
of width ch+d can be constructed in time O(n®) for any h consecutive layers. Let
P be a parameterized problem on G such that P has the LSP of width w and size-
factor d and there exists an O(8“n)-time algorithm, given a tree decomposition
of width w for G, decides whether problem P has a solution of size k on G.

Then there exists an algorithm which decides whether P has a solution of
size k on G in time O(§2V0d+ewtdy 4 poy,

8 Conclusions and future work

In this paper, we considered H-minor-free graphs, where H is a single-crossing
graph, and proved that if these graphs have a k-dominating set then their
treewidth is at most ¢Vk for a small constant ¢. As a consequence, we obtained
exponential speedup in designing FPT algorithms for several NP-hard problems
on these graphs, especially K3 3-minor-free or Ks-minor-free graphs. In fact, our
approach is a general one that can be applied to several problems which can be
reduced to the dominating set problem as discussed in Section 5 or to problems
that themselves can be solved exponentially faster on planar graphs [2]. Here,
we present several open problems that are possible extensions of this paper.

10



One topic of interest is finding other problems to which the technique of this
paper can be applied. Moreover, it would be interested to find other classes of
graphs than H-minor-free graphs, where H is a single-crossing graph, on which
the problems can be solved exponentially faster for parameter k.

For several problems in this paper, Kloks et al. [9,24,17,23] introduced a
reduction to the problem kernel on planar graphs. Since K3 3-minor-free graphs
and Ks-minor-free graphs are very similar to planar graphs in the sense of having
a linear number of edges and not having a clique of size six, we believe that one
might obtain similar results for these graphs. Working in this area was beyond
the scope of this paper, but still it would be instructive.

As mentioned before, Theorem 9 holds for any class of graphs with treewidth
< 2. It is an open problem whether it is possible to generalize it to apply to any
class of graphs of treewidth < h for arbitrary fixed h. Moreover, there exists no
general method for designing O(6*n)-time algorithms for vertex removal prob-
lems in graphs with treewidth < w. If this becomes possible, then Theorem 10
will have considerable algorithmic applications.

Finally, as a matter of practical importance, it would be interesting to obtain
a constant coefficient better than 16.5 for the treewidth of planar graphs having
a k-dominating set (or better than 4/3 for the case of a k-vertex cover). Such
a result would imply a direct improvement to our results and to all the results
in [1,2,23,9, 24].
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